摘要
设k是一不小于3的整数,G是连通图,具顶点数n≥7k-7,kn是偶数,且G的最小度δ(G)≥k。本文证明了:若对G中任意一对不相邻的顶点u、v均有2n-1≤d(u)+d(v)十2|(u)UN(V)D,则G有k一因子。
Let k be an integer such that k 3,and let G be a connected graph of order n with n at least 7k-7,kn even,and minimum degree at least k. This article gives a sufficient condition of which G has a k-factor involving the degree sum and the neighborhood union of any two independent venrtices.
出处
《五邑大学学报(自然科学版)》
CAS
1995年第1期34-42,共9页
Journal of Wuyi University(Natural Science Edition)
关键词
度和
邻域并
Degree Sum
Neighborhood Union