摘要
本文提出了一种用灰色系统关联度概念来确定两模糊子集隶属函数形状间的差异程度,并用海明(Hamming)距离确定两隶属函数间的接近程度,从而确定出多个有效解中的最优解的方法。其作法是:将多目标优化问题的理想解(由各单目标最优解构成)和有效解(非劣解)模糊化,求得各个模糊有效解与模糊理想解间的关联度和Hamming距离。最后,通过排序打分法确定出有效解中的最优解。
In this paper, we use a concept of grey system incidence degree to determine the difference degree between the membership function shapes of two fuzzy subsets and use Hamming distance to determine the close degree between the two membership functions, and thus to determine the optimal solution in the efficient solutions. The step is that the ideal solutions(consisting of the single-object optimal solutions)and efficient solutions(not bad solutions)of multiple-object optimazation questions are made fuzzy to obtain the incidence degree and Hamming distance between separate fuzzy efficient solutions and fuzzy ideal solutions. In the end, optimal solution in the efficient solutins can be determined by ordering and marking.
出处
《西南石油大学学报(自然科学版)》
CAS
CSCD
1990年第1期75-85,共11页
Journal of Southwest Petroleum University(Science & Technology Edition)
关键词
有效解
关联度
海明距离
排序打分
Efficient solution
Incidence degree
Hamming distance
Ordering and marking