摘要
设{X_n}是任意二进信源,{a_n}是有界非负实数列,(?)_n(ω)为熵密度偏差,c 为非负常数,D(c)=σ:liminf(?)_n(ω)≥-c}.本文得到了序列{a_nX_n}在D(c)上的一个极限定理,它是强大数定律的一个推广.
Let {X_n} be an arbitrary binary information sources,{a_n} be bounded sequence of nonnegative real numbers,φ_n(ω) be the entropy density deviation,c be a nonnegative constant,and D(c)={ω:liminfφ_n(ω)≥-c}, In this paper,we obtained a limit theorem of the sequence {a_nX_n} on D(c), which is an extension of the strong law of large numbers.
出处
《河北工业大学学报》
CAS
1990年第3期1-6,共6页
Journal of Hebei University of Technology
关键词
二进信源
熵密度
熵密度偏差
极限定理
强大数定律
Binary information source
Entropy density
Entropy density deviation
Limit theorem
Strong law of large numbers