期刊文献+

FINITE ELEMENT EXPANSION FOR VARIABLE COEFFICIENT ELLIPTIC PROBLEMS

FINITE ELEMENT EXPANSION FOR VARIABLE COEFFICIENT ELLIPTIC PROBLEMS
下载PDF
导出
摘要 The Ritz projections of the elliptic problem(?)(a<sub>ij</sub>(?)<sub>j</sub>u)+c<sub>0</sub>u=f in Ω,u=0 on (?)Ω,and the quasilinear eiliptic problem(?)(a<sub>i</sub>(x,Du))+a<sub>0</sub>(x,Du)=0 in Ω,u=0 on (?)Ωwith linear finite elements admit an asymptotic error expansion,respectively,for certain classes of“uniform” meshes.This provides the theoretical justification for the use of Richardson extrapolationfor increasing the accuracy of the scheme from O(h<sup>2</sup>) to O(h<sup>4</sup> |ln h|). The Ritz projections of the elliptic problem(?)(a_(ij)(?)_ju)+c_0u=f in Ω,u=0 on (?)Ω,and the quasilinear eiliptic problem(?)(a_i(x,Du))+a_0(x,Du)=0 in Ω,u=0 on (?)Ωwith linear finite elements admit an asymptotic error expansion,respectively,for certain classes of“uniform” meshes.This provides the theoretical justification for the use of Richardson extrapolationfor increasing the accuracy of the scheme from O(h^2) to O(h^4 |ln h|).
作者 丁彦恒 林群
出处 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1989年第1期54-69,共16页
关键词 finites elements ASYMPTOTIC error EXPANSION variable coefficient ELLIPTIC OPERATOR QUASILINEAR ELLIPTIC problem finites elements asymptotic error expansion variable coefficient elliptic operator quasilinear elliptic problem
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部