摘要
本文定义了一类x′-临界图。如果对每条边e∈G都有x′(G-e)<x′(G),别称图G是x′-临界图。k-x′-临界图是k-边-可着色而且临界的图。本文首先证明每个图都包含x′-临界图,△-x′-临界图是k_1+△k_1,其次证明了(△+1)-x′-临界图的几个性质。
This paper defines a class of the x'-critical graph.A graph is considered to be x'-critical, if x' (G-e) <x' (G) for each edge e of G. The k-x'-critical graph is a graph which is fc-edge-colourable and critical. This paper first Proves that each graph G contains a x'-critical graph and -x1-critical graph, is k1+k1 next Proves someproper ties of (A + 1)-x'-critical graphs.
出处
《吉林大学学报(信息科学版)》
CAS
1989年第3期43-47,共5页
Journal of Jilin University(Information Science Edition)
关键词
图论
颜色数
临界
colors
graph theory
critical