期刊文献+

一种高温细菌葡聚糖磷酸化酶的性质研究(Ⅰ) 被引量:1

Property of glucan phosphorylase from a thermophilic Bacterium (Ⅰ)
下载PDF
导出
摘要 为了研究极端嗜热细菌腾冲嗜热厌氧杆菌葡聚糖磷酸化酶(Tte-GlgP)的性质,将用大肠杆菌BL21DE3表达的Tte-GlgP进行了纯化,分别用SDS-PAGE电泳法及毛细管电泳法测定了分子量及等电点,结果表明,Tte-GlgP的分子量约为64kDa,等电点约为6.2,与推测的结果一致,说明Tte-GlgP在大肠杆菌体内可能得到了正确的折叠;WESTERN杂交试验的结果表明,Tte-GlgP在腾冲嗜热厌氧杆菌体内有表达,且终浓度为1.5%的麦芽糖能轻度诱导Tte-GlgP在腾冲嗜热厌氧杆菌体内的表达,而终浓度为1.5%的葡萄糖则轻度抑制Tte-GlgP在腾冲嗜热厌氧杆菌体内的表达,说明Tte-GlgP在腾冲菌体内可能参与了碳水化合物的代谢。本研究为进一步认识和应用Tte-GlgP提供了依据。 To investigate the characteristics of a glucan phosphorylase from Thermoanaerobacter tengcongens (Tte-GlgP), Tte-GlgP expressed in E. coli was purified, and its molecular weight and pI were determined by SDS-PAGE and capillary electrophoresis, respectively. It was found that the molecular weight and pI of the recombinant Tte-GlgP were about 64 kDa and 6.2, respectively. These results suggested that the Tte-GlgP might correctly folded in E. coli. The results of Western. hybridize showed that the glgP gene was expressed in T. tengcongensis. 1.5% maltose could slightly induce the expression level of Tte-GlgP, whereas 1.5% glucose slightly inhibited its expression level in T. tengcongensis. These results suggested that Tte-GlgP might be involved in the carbohydrate metabolism in T. tengcongensis. This article could provide some useful reference to deeply understand and further use Tte-GlgP.
作者 陈世琼
出处 《中国酿造》 CAS 北大核心 2009年第4期74-76,共3页 China Brewing
关键词 腾冲嗜热厌氧杆菌 葡聚糖磷酸化酶 纯化 等电点 tengcongens Glucan phosphorylase purification pI
  • 相关文献

参考文献13

  • 1NEWGARD C B, HWABG P K, FLETTERICK R J. The family of glycogen phosphorylases: structure and function [J]. Crit Rev Biochem Mol Biol, 1989, 24(1) : 69-99.
  • 2SCHINZEL R, NIDETZKY B, Bacterial alpha-glucan phosphorylases [J]. FEMS Microbiol Lett, 1999, 171 (2) : 73-79.
  • 3GRIESSLER R, SCHWARZ A, MUCHA J, et al. Tracking interactions that stabilize the dimer structure of starch phosphorylase from Corynebacterium callunae [J]. Eur J Bioehem, 2003,270 (10) : 2126-2136.
  • 4SCHWARZ A,PIERFEDERICI F M,NIDETZKY B. Catalytic mechanism of alpha-retaining glucosyl transfer by Cotynebacterium callunae starch phosphorylase: the role of histidine-334 examined through kinetic characterization of site-directed mutants [J]. Biochem J, 2005,387 (Pt 2) : 437-445.
  • 5BAO Q, TIAN Y, LI W, et al. A complete sequence of the T. tengcongensis genome [J]. Genome Res, 2002, 12 (5).689-700.
  • 6PARISH C, COWDEN W B. WILLENBORG DO. Phosphosugar - based anti-inflammatory and/or immunosuppressive drugs [J]. WO 90/01938; Int C1 A61 K, 1990, 31/725,31/71, C07H 11/04.
  • 7KITAMOTO Y, AHASHI H, TANAKA H, et al. a -Glucose-l-phosphate formation by a novel trehalose phosphorylase from Flammulina velutipes [J]. FEMS Microbiol Lett., 1988, 552: 147-149.
  • 8SCHIRALDI C, DILERNIA I, DEROSA M. Trehalose production: exploiting novel approaches [J]. Treads Biotechnol,2002,20 (10): 420-425.
  • 9SINGER M A, LINDQUIST S. Multiple effects of trehalose on protein folding in vitro and in vivo [J]. Mol Cell, 1998, 1 (5) : 639-648.
  • 10ELBEIN A D,PAN Y T, Pastuszak I, et al. New insights on trehalose: a multifunctional molecule [J]. Glycobiology, 2003,13 (4) : 17R-27R.

同被引文献13

  • 1NEWGARD C B, HWANG P K, FLETTERICK R J. The family of glycogen phosphorylases: structure and function[J]. Crit Rev Biochem Mol Biol, 1989, 24(1): 69-99.
  • 2SCHINZEL R, NIDETZKY B. Bacterial alpha-glucan phosphorylases [J]. FEMS Microbiol Lett, 1999, 171(2): 73-79.
  • 3GRIESSLER R, SCHWARZ A, MUCHA J, et al. Tracking interactions that stabilize the dimer structure of starch phosphorylase from Corynebacterium callunae[J]. Eur J Biochem, 2003, 270(10): 2126-2136.
  • 4SCHWARZ A, PIERFEDERICI F M, NIDETZKY B. Catalytic mechanism of alpha-retaining glucosyl transfer by Corynebacterium callunae starch phosphorylase: the role of histidine-334 examined through kinetic characterization of site-directed mutants[J]. Biochem J, 2005, 387(2): 437-445.
  • 5BAO Q, TIAN Y, LI W, et al. A complete sequence of the T. tengcongensis genome[J]. Genome Res, 2002, 12(5): 689-700.
  • 6KITAMOTO Y, AHASHI H, TANAKA H, et al. a-Glucose-1-phosphate formation by a novel trehalose phosphorylase from Flammulina velutipes[J]. FEMS Microbiol Lett, 1988, 552: 147-149.
  • 7SCHIRALDI C, di LERNIA I, de ROSA M. Trehalose production: exploiting novel approaches[J]. Trends Biotechnol, 2002, 20(10): 420- 425.
  • 8SINGER M A, LINDQUIST S. Multiple effects of trehalose on protein folding in vitro and in vivo[J]. Mol Cell, 1998, 1(5): 639-648.
  • 9ELBEIN A D, PAN Y T, PASTUSZAK I, et al. New insights on trehalose: a multifunctional molecule[J]. Glycobiology, 2003, 13(4): 17-27.
  • 10ZEA C J, POHL N L. Kinetic and substrate binding analysis of phosphorylase b via electrospray ionization mass spectrometry: a model for chemical proteomics of sugar phosphorylases[J]. Anal Biochem, 2004, 327(1): 107-113.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部