期刊文献+

1Cr18Ni9不锈钢热处理后的晶界特征分布及耐蚀性能 被引量:1

Grain Boundary Character Distribution and Corrosion Resistance of 1Cr18Ni9 Stainless Steel after Heat Treatment
下载PDF
导出
摘要 采用INCA Crystal电子背散射衍射分析系统研究了1Cr18Ni9不锈钢经不同工艺热处理后的晶界特征分布,并通过试验验证晶界特征分布对耐蚀性的影响。结果表明,原始态试样低∑-CSL晶界含量在85%左右,主要分布在∑3、∑9、∑27和∑29四个位置;热处理后晶界特征分布变化明显,在水淬试样中低∑-CSL晶界主要集中在∑3、∑9处,∑3晶界占所有低∑-CSL晶界的90%以上;在深冷试样中∑3晶界占全部低∑-CSL晶界的95%以上,并且低∑-CSL晶界主要分布在一般大角度晶界构成的晶界网络上,有效阻断了一般大角度晶界间的连通性;耐蚀试验结果表明,材料的极化电位原始态的为-0.299 V,热处理后增加到-0.200 V或更高,提高了耐蚀性。 Grain boundary character distribution of 1Cr18Ni9 stainless steel after various heat treatment was investigated by EBSD analysis apparatus (INCA-Crystal, OXFORD). The effect of grain boundary character distribution on the corrosion resistance of steel was investigated, too. The results show that the low ∑-CSL grain boundary is about 85% and is mainly located at ∑3, ∑9, ∑27 and ∑29 in hot rolled specimen. The variance in the grain boundary character distribution in specimen after heat treating is as follows: the low ∑-CSL grain boundary is mainly located at ∑3 and ∑9, with ∑3 amounting to more than 90% of overall low ∑-CSL in the water-quenched specimen,but in the deep freezed specimen .E3 amounts to more than 95% of overall low ∑-CSL, low ∑-CSL is mainly locaked at the grain boundary network consisting of general high angle boundary,with the connection of general high angle boundary being cut off. In the corrosion-resisting test the polarization potential of steel will increase from - 0. 299 V before heat treating to - 0. 200 V after heat treating, with the corrosion resistance of steel being enhanced.
出处 《热处理》 CAS 2009年第2期32-36,共5页 Heat Treatment
关键词 1CR18NI9钢 EBSD 晶界特征分布 极化电位 耐蚀性 1Cr18Ni9 steel EBSD grain boundary character distribution polarization potential corrosion resistance
  • 相关文献

参考文献2

二级参考文献40

  • 1夏爽,周邦新,陈文觉,王卫国.高温退火过程中铅合金晶界特征分布的演化[J].金属学报,2006,42(2):129-133. 被引量:31
  • 2Wright S l,Adams B L.Automatic analysis of electron backscatter diffraction patterns [J].Met Trans A,1992,23:759 - 767.
  • 3Adams B L,Wright S I,Kunze K.Orientation imaging:theemergence of a new microscopy [J].Met Trans A,1993,24:819 - 831.
  • 4Wright S I,Field D P,Nowell M M.Impact of local texture on recrystallization and grain growth via in-situ EBSD [J].Materials Science Forum,2005,495 -497:1121 - 1130.
  • 5Nowell M M,Wright S I.Phase differentiation via combined EBSD and XEDS [J].J.Microscopy,2004,213:296 - 305.
  • 6Weiland H,Field D P,Adams B L.Local texture evolution during deformation by in-situ OIM analysis [A].Proc of the Eleventh International Conference on Textures of Materials [C].Beijing:International Academic Publishers,1996,1414-1419.
  • 7Park KK,Oh ST,Baeck S M,et al.In situ deformation behavior of retained austenite in TRIP steel [J].Materials Science Forum,2002,408 - 412:571 - 576.
  • 8Seward G G E,Celotto S,Prior D J,et al.In situ SEMEBSD observations of the hcp to bcc phase transformation in commercially pure titanium [J].Acta Mat,2004,52:821 -832.
  • 9Field D P,Nowell M M.Recrystallization and growth of pure Cu damascene structures [A].The Fourth Int.Conf.on Recrystallization and Related Phenomena [C].Japan:Japan Institute of Metals,1999,851 - 856.
  • 10Hurley P J,Humphreys F J.A study of reerystallization in single-phase aluminium using in-situ annealing in the scanning electron microscope [J].J Microscopy,2004,213:225 - 234.

共引文献57

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部