期刊文献+

正交读出方式体全息光栅通信波长衍射特性

The diffractive characteristics at communication wavelengths of volume holographic gratings with the orthogonal readout scheme
下载PDF
导出
摘要 为了寻求高质量和高密度的密集波分复用器件,采用了在双掺铟铁的铌酸锂晶体中透射式记录/正交式读出方案制作体全息光栅的方法,对体全息光栅衍射特性进行理论分析和实验验证。利用波长为532nm的激光记录尺寸比为1:1的体全息光栅,然后用中心波长为1550nm的红外通讯波长成功读出,取得了波长选择性为0.5nm的波长衍射特性数据。同时,利用2维耦合波理论的闭形式解析解得到了该体全息光栅衍射效率随波长的变化关系。结果表明,实验结果与理论预期相符合,这一方法对制作体全息光栅密集波分复用器件的实用化是有帮助的。 In order to obtain good quality and high-dense wavelength division multiplexing (DWDM) devices, the diffraction property of volume holographic gratings, produced in an iron and indium co-doped LiNbO3 crystal by means of the transmission writing and orthogonal readout (TWOR) scheme,was analyzed theoretically and verified experimentally. The volume holographic grating with a grating size ratio of 1:1 was recorded at the laser wavelength of 532nm,and was successfully read out by using a tunable laser at the central wavelength around 1550nm. Correspondingly ,the wavelength selectivity of 0.5nm was achieved,which was measured as the 3dB bandwidth of the diffraction efficiency curve. Meanwhile,the relationship of diffraction efficiency versus reading wavelength for such a volume holographic grating was obtained with the corrected solution to the 2-D coupled-wave equation in closed mathematical form. The experimental results agreed with the theoretical prediction well, and they show that the presented method is helpful for making a practical holographic grating DWDM device.
出处 《激光技术》 CAS CSCD 北大核心 2009年第2期113-116,共4页 Laser Technology
基金 北京市自然科学基金资助项目(4042010 4071001) 北京市属市管高等学校人才强教计划资助项目 北京市教育委员会科技发展计划资助项目
关键词 全息 波长选择性 密集波分复用 透射式纪录/正交式读出方案 2维耦合波理论 holography wavelength selectivity dense wavelength division multiplexing transmission writing and orthogonal readout scheme 2-D coupled-wave theory
  • 相关文献

参考文献3

二级参考文献31

  • 1张文碧,杨齐民,钟丽云,王正荣,熊秉衡.全息照片木纹噪声的产生与抑制[J].激光杂志,1995,16(4):151-153. 被引量:4
  • 2张文碧,钟丽云,宫爱玲,杨齐民.散射物体全息照片的显微结构与拍摄参数的选择[J].激光杂志,1997,18(2):32-34. 被引量:2
  • 3George Barbastathis, Michal Balberg, D J Brady. Confocal microscopy with a volume holographic filter[J].Opt Lett,1999, 24(12):811-813.
  • 4J Hukriede, I Nee, D Kip et al. Thermally fixed reflection gratings for infrared light in LiNbO3 :Ti: Fe channel waveguides[J]. Opt Lett , 1998, 23(17):1405-1407.
  • 5Geoffrey W Burr, C Michael Jefferson, Hans Coufal et al. Volume holographic data storage at an areal density of 250 gigapixels/in, ^2[J]. Opt Lett , 2001, 26(7):444-446.
  • 6Kebin Jia, Dapeng Yang, Shubo Dun et al. Holographic storage scheme based on digital signal processing [J]. Chin Opt Lett , 2003, 1(10):579-582.
  • 7H Kogelnik. Coupled wave theory for thick hologram gratings[J]. Bell Syst Tech J,1969. 48(9):2909-2947.
  • 8F H Mok. Angle-multiplexed storage of 5000 holograms in lithium niobate[J]. Opt Lett , 1993, 18(11):915-917.
  • 9L Solymar. A general two-dimensional theory for volume holograms [J]. Appl Phys Lett , 1977, 31(12):820-822.
  • 10L Solymar, D J Cooke. Volume Holography and Volume Gratings[M]. New York: Academic Press, 1981. 164-207.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部