期刊文献+

基于二进制的约束性关联规则挖掘算法 被引量:4

Constrained Association Rules Mining Algorithm Based on Binary
下载PDF
导出
摘要 提出一种基于二进制的约束性关联规则挖掘算法,用数字区间确定候选频繁项的范围,通过数值的递增/减方式交叉产生候选项,利用二进制的逻辑操作计算支持数,并用数字特征减少扫描事务数,以提取满足约束条件的关联规则。该算法适于挖掘任何长度的约束性频繁项目集,且具有较高的运算效率。 An Algorithm of Constrained Association Rules Mining Based on Binary(ACARMB) is presented, which uses digital section to ascertain rang of candidate frequent items that can crosswise generate candidate items by the methods about digital ascending and descending, computes support by binary logic operation and uses digital character to reduce the number of scanned transactions, and extracts association rules satisfied with Constrained Condition(CC). This algorithm is suitable for mining any length frequent item sets, and has higher efficiency for calculation.
作者 方刚
出处 《计算机工程》 CAS CSCD 北大核心 2009年第7期78-81,共4页 Computer Engineering
关键词 关联规则 约束条件 交叉搜索 数字特征 二进制 association rules Constrained Condition(CC) crossing search digital character binary
  • 相关文献

参考文献5

二级参考文献22

  • 1李天志,梁家荣,范平.基于二进制的集合运算研究[J].计算机工程与应用,2005,41(33):100-102. 被引量:2
  • 2李天志,梁家荣,范平,徐凤生.基于二进制的粗糙集基本运算研究[J].广西科学,2006,13(2):109-112. 被引量:1
  • 3R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. ACM SIGMOD Int'l Conf. Management of Data, Washington, D. C., 1993.
  • 4Han J, Kamber. MData Mining: Concepts and Techniques.Beijing: High Education Press, 2001.
  • 5B. Goethals. Survey of frequent pattern mining. Helsinki Institute for Information Technology, Technical Report, 2003.
  • 6R. Agrawal, R. Srikant. Fast algorithm for mining association rules. The 20th Int'l Conf. VLDB, Santiago, Chile, 1994.
  • 7M. Houtsma, A. Swami. Set-oriented mining for association rules in relational databases. In: Yu P., Chen A, eds. Proc. Int'l Conf. Data Engineering. Los Alamitos, CA: IEEE Computer Society Press, 1995. 25~33.
  • 8A. Savasere, E. Omiecinski, S. Navathe. An efficient algorithm for mining association rules. The 21st Int' l Conf. VLDB, Zurich,Switzerland, 1995.
  • 9J. Han, Y. Fu. Discovery of multiple-level association rules from large databases. The 21st Int'l Conf. VLDB, Zurich,Switzerland, 1995.
  • 10R. Bayardo. Efficiently mining long patterns from databases. In:L. M. Haas, A. Tiwary, eds. Proc. ACM SIGMOD Int'l Conf.Management of Data. New York: ACM Press, 1998. 85~93.

共引文献68

同被引文献27

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部