期刊文献+

Photosensitivity and photoluminescence of Sn/Yb codoped silica optical fiber preform

Photosensitivity and photoluminescence of Sn/Yb codoped silica optical fiber preform
原文传递
导出
摘要 Sn/Yb codoped silica optical fiber preform is prepared by the modified chemical vapor deposition (MCVD) followed by the solution-doping method. Ultraviolet (UV) optical absorption, photoluminescence (PL) spectra under 978-nm laser diode (LD) pumping, and refractive index change after exposure to 266-nm laser pulses are obtained. There is only a little change in the PL spectra while a positive refractive index change up to 2×10^-4 is observed after 30-min exposure to 266-nm laser pulses. The results show that both of the peculiar photosensitivity of Smdoped silica and the gain property of Yb-doped silica fiber are preserved in the Sn/Yb codoped silica optical fiber preform. The experimental data suggest that the photosensitivity of the fiber preform under high energy density laser irradiation should be mainly due to the bond-breaking of oxygen deficient defects, while under relatively low energy density laser irradiation, the refractive index change probably originates from the photoconversion of optically active defects. Sn/Yb codoped silica optical fiber preform is prepared by the modified chemical vapor deposition (MCVD) followed by the solution-doping method. Ultraviolet (UV) optical absorption, photoluminescence (PL) spectra under 978-nm laser diode (LD) pumping, and refractive index change after exposure to 266-nm laser pulses are obtained. There is only a little change in the PL spectra while a positive refractive index change up to 2×10^-4 is observed after 30-min exposure to 266-nm laser pulses. The results show that both of the peculiar photosensitivity of Smdoped silica and the gain property of Yb-doped silica fiber are preserved in the Sn/Yb codoped silica optical fiber preform. The experimental data suggest that the photosensitivity of the fiber preform under high energy density laser irradiation should be mainly due to the bond-breaking of oxygen deficient defects, while under relatively low energy density laser irradiation, the refractive index change probably originates from the photoconversion of optically active defects.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第4期348-351,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 10074011 and 60378034) the Ministry of Science and Technology of China (Nos. 02JD14001 and 03DJ14001).
关键词 Doping (additives) Fibers Irradiation Laser pulses Light refraction Light sensitive materials Optical fibers Oxygen PHOTOLUMINESCENCE PHOTOSENSITIVITY Preforming Pumping (laser) Refractive index REFRACTOMETERS Semiconductor quantum wells SILICA Tin YTTERBIUM Doping (additives) Fibers Irradiation Laser pulses Light refraction Light sensitive materials Optical fibers Oxygen Photoluminescence Photosensitivity Preforming Pumping (laser) Refractive index Refractometers Semiconductor quantum wells Silica Tin Ytterbium
  • 相关文献

参考文献12

  • 1Y.Z.Xu,H.Y.Tam,S.Y.Liu,and M.S.Demokan,IEEE Photon.Technol.Lett.10,1253 (1998).
  • 2G.A.Ball,W.W.Morey,and P.K.Cheo,IEEE Photon.Technol.Lett.5,267 (1993).
  • 3G.G.Karapetyan,A.V.Daryan,D.M.Meghavoryan,and N.E.Gevorgyan,Opt.Commun.205,421 (2002).
  • 4W.H.Loh,L.Dong,and J.E.Caplen,Appl.Phys.Lett.69,2151 (1996).
  • 5N.Chiodini,A.Paleari,G.Spinolo,A.Chiasera,M.Ferrari,G.Brambilla,and E.R.Taylor,J.Non-Cryst.Solids 311,217 (2002).
  • 6G.Brambilla,V.Pruneri,and L.Reekie,Appl.Phys.Lett.76,807 (2000).
  • 7G.Brambilla,V.Pruneri,L.Reekie,C.Contardi,D.Milanese,and M.Ferraris,Opt.Lett.25,1153 (2000).
  • 8N.Chiodini,S.Ghidini,A.Paleari,G.Brambilla,and V.Pruneri,Appl.Phys.Lett.77,3701 (2000).
  • 9A.Anedda,C.M.Carbonaro,A.Serpi,N.Chiodini,A.Paleari,R.Scotti,G.Spinolo,G.Brambilla,and V.Pruneri,J.Non-Cryst.Solids 280,287 (2001).
  • 10G.Chen,Y.Li,L.Liu,Y.He,L.Xu,and W.Wang,J.Appl.Phys.96,6153 (2004).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部