期刊文献+

基于蚁群神经网络的线性直流电源故障诊断 被引量:19

Fault diagnosis of linear DC electric source based on ant colony algorithm and neural network
下载PDF
导出
摘要 线性直流电源是电子设备中最易发生故障的薄弱环节之一,其不完善的故障模型和容差等问题使故障诊断变得复杂。神经网络的自组织学习能力为故障诊断问题提供了一种新的解决途径,反向传播算法是神经网络中应用广泛的一种多层前馈神经网络模型。但算法有求解精度低、搜索速度慢、易于陷入局部极小值的缺点。蚁群算法是一种新型的模拟进化算法,有正反馈、分布式计算、启发性收敛等特性。本文将基于蚁群算法的神经网络的方法应用于线性直流电源的故障诊断中,仿真实验表明:此方法提高了网络的训练效率和故障定位的准确性。 Linear DC electric source circuit is one of the weak parts that breaks down most easily in electronic equipment. Its incomplete fault model and tolerance problem make the fault diagnosis more complicated. The self-organized learning ability of the neural network provides a new way to solve the problem. Back propagation algorithm is a model of feedback neural networks widely used in many areas, but it has some shortcomings, such as low-precision solution, slow search speed and easy convergence to the local minimum points. Ant colony system is a novel simulated evolutionary algorithm. Ant system has the advantages such as positive feedback, distributed computation and using a constructive greedy heuristic. A method for fault diagnosis of linear DC electric source circuits based on ant colony algorithm and neural technology is introduced. Simulation experiment shows that the new method reduces the dimension of input to the neural network, raises the training efficiency and improves the fault classification accuracy.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第3期515-520,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(50677069)资助项目
关键词 蚁群算法 神经网络 线性直流电源 故障诊断 ant colony algorithm neural network linear DC electric source fault diagnosis
  • 相关文献

参考文献9

二级参考文献38

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2姚剑敏,林明秀,宋建中.基于神经网络的模拟电路故障诊断技术探讨[J].计算机仿真,2005,22(4):187-189. 被引量:7
  • 3彭敏放,何怡刚,王耀南,贺建飚.模拟电路的融合智能故障诊断[J].中国电机工程学报,2006,26(3):19-24. 被引量:39
  • 4郑君里 杨行峻.人工神经网络[M].北京:科学普及出版社,1993..
  • 5张志涌.精通Matlab 6.5[M].北京:北京航空航天大学出版社,2003..
  • 6DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agent [ J ]. IEEE Trans on Systems,Man,and Cybernetics, 1996, 26( 1 ):29 - 41.
  • 7COLORNI A. Heuristics from nature for hard combinatorial optimization problems [ J ]. Int Trans in Opnl Res,1996, 3(1) :1 -21.
  • 8DORIGO M, GAMBARDELLA L M. A cooperative learning approach to the traveling salesman problem [ J ].IEEE Trans on Evolutionary Computation, 1997, 1 ( 1 ) :53 -66.
  • 9MARCANTONIO CATELANI, FORT. Soft Fault Detection and Isolation in Analog Circuit: Some Result and a Comparison Between a Fuzzy Approach and Radial BasisFunetion Network[J].IEEE Trans. Instrumentation and measurement,2002,51 (2) :196- 202.
  • 10HE Y, SUN Y. A neural network-based L1-norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance[J] .IEE proc Circuits Device & Systems, 2001,148(4):223-228.

共引文献164

同被引文献165

引证文献19

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部