期刊文献+

机器人视觉系统模糊识别抓取物算法 被引量:1

Fuzzy recognition and object-capture algorithm for robot vision systems
原文传递
导出
摘要 针对机器人视觉系统对抓取物的模糊识别问题,参照人眼-脑识别对象的过程,建立了包括区域分割与模糊识别两个环节的识别算法.以视觉图像的灰度与色度特征作为区域分割与模糊识别的依据,从灰度、色度及形体特征上提取特征集的指标,并根据经walsh变换后图像灰度迅速向低频聚集的特点,提出基于walsh变换的基元模式识别特征的定义方法.在构建识别目标矩阵与关系矩阵的基础上,应用模糊关系合成与最大隶属度原则建立识别算法.该算法可从少量的采样点中识别出对象,具有较好的实时性. With reference to the object recognition process of human eyes and minds, the region segmentation and fuzzy recognition algorithms were established for robot vision systems in order to deal with the problem of the object-capture recognition. The gray-scale and chromaticity of images were taken as a basis for region segmentation and fuzzy recognition, the index of the characteristics were taken from gray-scale, chromaticity and body features, and the definition method for feature recognition on the basis of walsh transform metamodels was put forward with the sharp low-frequency gathering tendency of the gray-scale. Then, the recognition algorithms was worked out utilizing the fuzzy relation composition and maximum subjection according to the object recognition matrix and relation matrix was established. With the algorithms, the objects within small samplings spots can be recognized, which has practical values in the object-recognition in the capture control of robots.
作者 黄荣瑛
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第2期197-200,共4页 Journal of Beijing University of Aeronautics and Astronautics
关键词 视觉 图像分析 模式识别 WALSH变换 内积 vision image analysis object recognition walsh transform inner product
  • 相关文献

参考文献5

  • 1Christian Martens. Teilautonome aufgabenbearbeiturng bei rehabilitionsrobotern mit manipulator[ M ]. Aachen: Shaker Verlag, 2004 : 2 - 24
  • 2Dipl-Ing Thomas Trittin. Methode der virtuellen punkte zur autonomen bildbasierten roboterregelung [ D ]. Bremen: Institute of Automation, Universitaet Bremen,1999:28 -35
  • 3Dipl-Ing Constantin V,Altrock M O R. Fuzzy logic,band 1 technologie [ M ]. Muenchen Wien : Oldenbourg Verlag, 1995 : 18 - 23
  • 4Dipl-Ing ConstantinV, Altrock M O R. Fuzzy logic, band 3, werkzeuge [ M ]. Muenchen Wien : Oldenbourg Verlag, 1995 : 35 -41
  • 5孙仲康.数字图象处理及应用[M].北京:国防工业出版社,1985:50-58

共引文献1

同被引文献9

  • 1陈鹏,符德江.物体识别中的视点问题[J].心理科学进展,2006,14(1):12-17. 被引量:3
  • 2Flynn H. Machine learning applied to object recognition in robot search and rescue systems [ D ]. Oxford, England: University of Oxford ,2009.
  • 3Tkach I, Bechar A,Edan Y. Switching between collaboration lev- els in a human-robot target recognition system [ J]. IEEE Trans- actions on Systems, Man, and Cybernetics, Part C: Applications and Reviews ,2011,41 (6) :955-967.
  • 4Chella A,Frixione M, Gaglio S. Conceptual spaces for computer vision representations [ J ]. Artificial Intelligence Review,2001,16(2) :137-152.
  • 5Kira Z. Inter-robot transfer learning for perceptual classification [ C ]// van der Hoek, Kaminka, Lesprance, Luck and Sen. Proc of 9th Int Conf on Autonomous Agents and Multiagent Systems. Toronto : IFAAMAS ,2010 : 13 -20.
  • 6Gardenfors P. Conceptual spaces : the geometry of thought [ M ]. Cambridge : MIT Press, 2000.
  • 7Felzenszwalb P F, Hutten|ocher D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004,59 (2) : 167-181.
  • 8Bishop C M. Pattern recognition and machine learning [ M ]. Singapore : Springer,2006.
  • 9Chang C C, Lin C J. LIBSVM:a library for support vector ma- chines [J]. ACM Transactions on Intelligent Systems and Tech- nology ,2011,2 ( 3 ) : 1-27.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部