期刊文献+

基于交叉变异操作的连续域蚁群算法研究 被引量:2

Research into Continual Domain Ant Colony Algorithm Based on Overlapping Mutation Operation
下载PDF
导出
摘要 研究一种基于交叉变异操作的连续域蚁群算法,该算法对解的每一分量的可能取值组成一个动态的候选组,并记录候选组中的每一个可能取值的信息量。在蚁群算法的每一次迭代中,首先根据信息量选择解分量的初值,然后使用交叉、变异操作来确定全局最优解的值,通过相应算法设计,对于来自相对适应度较大的解的分量值,其变异的区域较小,成为局部搜索,反之,变异的区域较大,则构成全局搜索。同时,随着迭代次数的增多,分量值的变异幅度逐渐变小,这样可使收敛过程在迭代次数较多时得到适当的控制,以加速收敛。最后通过仿真实验,把交叉变异操作的连续域蚁群算法与遗传算法性能进行比较,证明了交叉变异操作的连续域蚁群算法具有较高的搜索较优解的能力,大大节约了计算时间。 This paper studies a continual-domain ant colony algorithm based on the overlapping mutation operation, which forms a dynamic candidate group to the solution of each component possible value, and records each possibility value information content in the candidate group. In each iteration of ant colony algorithm, firstly, it should choose the starting value of solution component according to the information content, and then it should use overlapping and variation operation to determine the overall optimal solution value. Through the corresponding algorithm design, from the relative sufficiency big solution component value, its variation region is small and becomes the partial search. Otherwise, the variation region is big and then constitutes the overall situation search. At the same time, along with iterative number of times increase, the component value variation scope becomes gradually small, as this may enable the restraining process a lot when the iterative number of times is under the suitable control in accelerating convergence. Finally through the simulation experiment, compared the overlapping variation operation continual domain ant colony algorithm with the genetic algorithm performance. Conclusion has proven the overlapping variation operation continual domain ant colony algorithm has the high search superior solution ability and saves the computing time greatly.
出处 《重庆师范大学学报(自然科学版)》 CAS 2009年第2期87-89,共3页 Journal of Chongqing Normal University:Natural Science
基金 川北医学院苗圃基金(08基-17)
关键词 交叉变异 连续域 蚁群算法 overlapping mutation continual domain ant colony algorithm
  • 相关文献

参考文献6

二级参考文献41

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 3马振华 刘坤林 等.运筹学与最优化理论卷[M].北京:清华大学出版社,1998.254-278.
  • 4[1]Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the travelling salesman problem[J]. IEEE Trans Evol Comp,1997,1(1):53-66.
  • 5[2]Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans SMC: Part B,1996,26(1):29-41.
  • 6[3]Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[A]. Proc IEEE Int Conf Evol Comp[C]. Piscataway, 1996.622-627.
  • 7[4]Boryczka U, Boryczka M. Generative policies in ant systems for scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles,1998.1:382-386.
  • 8[5]Boryczka U. Learning with delayed rewards in ant sys-tems for the job-shop scheduling problem[A]. First Int Conf Rough Sets Current Trends Comp[C]. Bruxelles,1998.271-274.
  • 9[6]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem[J]. J Oper Res Soci,1999,50(2):167-176.
  • 10[7]Maniezzo V,Dorigo M,Colorni A.Algodesk:An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem[J]. European J Oper Res,1995,81(1):188-204.

共引文献301

同被引文献19

  • 1李将军,叶仲泉,宫子风.改进蚁群算法及其仿真研究[J].计算机应用,2008,28(S2):94-96. 被引量:11
  • 2张军英,敖磊,贾江涛,高琳.求解TSP问题的改进蚁群算法[J].西安电子科技大学学报,2005,32(5):681-685. 被引量:25
  • 3杜荣华,姚刚,吴泉源.蚁群算法在移动Agent迁移中的应用研究[J].计算机研究与发展,2007,44(2):282-287. 被引量:15
  • 4张云勇 刘锦德.移动agent技术[M].北京:清华大学出版社,2003..
  • 5Dorigo M, Maniezzo V, Colomi A.The ant system: optimi- zation by a colony of cooperating Agents[J].IEEE Trans- actions on Systems, Man and Cybernetics, 1996,26 (1) : 29-41.
  • 6Dorigo M,Blumb C.Ant colony optimization theory: a sur- vey[J].Theoretical Computer Science,2005,344:243-278.
  • 7Puris A, Bello R, Martinez Y, et al.Two-stage ant colony optimization for solving the traveling salesman problem[C]// Nature Inspired Problem-Solving Methods in Knowl- edge Engineering, 2007 : 307-316.
  • 8Hani Y,Amodeoa L,Yalaouia F,et al.Ant colony optimi-zation for solving an industrial layout problem[J].Euro- pean Journal of Operational Research,2007,83 : 633-642.
  • 9Heinonen J, Petterssona F.Hybrid ant colony optimiza- tion and visibility studies applied to a job-shop sched- uling problem[J].Applied Mathematics and Computation, 2007,187 : 989-998.
  • 10Moizuml K.Mobile Agent planning problem[D].Hanover, New Hampshire: Thayer School of Engineering, Dart- mouth College, 1998.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部