摘要
在高等数学教学中,常常作极坐标变换x=ρcosθ,y=ρsinθ,一般要求ρ≥0.但是玫瑰线ρ=acoskθ和ρ=asinkθ作图时,没有限制条件ρ≥0,特别在计算图形面积和曲线长度时,往往带来不便.为此给出了一般多叶玫瑰线以及在限制条件ρ≥0时在画法上的区别与联系,同时介绍了一般多叶玫瑰线的特点和几个重要结论.
In the teaching of Higher Mathematics, the transformation of polar coordinates x = ρcosθ,y=ρsinθ are usually given, and ofen ρ≥0 is often required. But in the drawing of multibranches rose curves,there is no restriction ρ≥0,and so the troubles are ofen brought in the counting of area and lengh. In this paper, a technique of drawing multi-branches rose curves is given and several important conclusions about multi-branches rose curves are obtained.
出处
《山东理工大学学报(自然科学版)》
CAS
2009年第2期88-90,共3页
Journal of Shandong University of Technology:Natural Science Edition
关键词
多叶玫瑰线
极坐标方程
全椭圆积分
multi-branches rose curve
polar coordinates equation
elliptical integral