期刊文献+

XML快速关联规则挖掘算法的研究

Research on Quick Frequent Patterns Mining Algorithm from XML Data
下载PDF
导出
摘要 本文研究如何快速有效地从XML数据中挖掘频繁模式,提出了从XML数据中挖掘频繁模式的增量式算法FreqtTree。该算法首先将XML文档转化成DOM树,然后从DOM树中挖掘所有频繁模式。FreqtTree算法采用最右扩展技术,对DOM树仅遍历一次,因此具有很高的效率。在此基础上详细描述了基于DOM树的关联规则挖掘算法DFreqtTree。最后将本文提出的算法用Java语言实现,并进行性能分析,结果表明算法是高效可行的。 It presents an efficient mining algorithm FreqtTree for discovering all frequent patterns from XML data, and then considers mining global frequent patterns from XML data in distributed environment in this paper. First of all, the XML files are transferred to DOM tree, and then it mines all the frequent patterns from the DOM tree. It’s a high efficient algorithm because it adopts the right extension technology and scans the DOM tree only one time. After that, it describes the distributed association rule data mining algorithm DFreqtTree based on DOM tree. At last, this algorithm is implemented and analyzed by Java language.
出处 《微计算机信息》 2009年第12期221-222,共2页 Control & Automation
关键词 关联规则 XML 数据挖掘 JAVA Frequent Patterns XML Data Mining JAVA
  • 相关文献

参考文献2

二级参考文献9

  • 1李超,余昭平.基于最大模式的关联规则挖掘算法研究[J].微计算机信息,2006(02X):164-165. 被引量:20
  • 2[1]Agrawal R etal.Mining association rules between sets of items in large databa.ses [C].In: Proceedings of ACM SIGMOD Conference on Management of data.Washington:DC,1993.207-216.
  • 3[2]Agrawal R, Srikant R.Fast algorithms for mining association rules[C].In: Pr.oceedings of the 20th International Conference on Very Large Databases.Santiago:Chile,1994.487-499.
  • 4[5]Jiming Liu, Jian Yin.Towards Efficient Data Re-mining(DRM)[C].In:PAKDD 2001,LNAI 2035:406~412.
  • 5康塔尼克著,闪四清等译.数据挖掘:概念、模型、方法和算法[M].北京:清华大学出版社,2003
  • 6[英]汉德(Hand,D.).数据挖掘原理[M].北京:机械工业出版社,2003,4.1.
  • 7Li,G.,and Hamilton,H.J.Basic Association Rules [A].In Proceedings 2004 SIAM International Conference on Data Mining (SDM'04),Lake Buena Vista,FL, April,2004,pp.166-177.
  • 8冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 9周海岩.关联规则的开采与更新[J].软件学报,1999,10(10):1078-1084. 被引量:40

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部