期刊文献+

分数阶Lorenz混沌系统的修正投影同步 被引量:5

Modified Projective Synchronization of the Fractional Lorenz Chaotic System
下载PDF
导出
摘要 用三种不同的方法考虑分数阶Lorenz混沌系统的修正投影同步,基于分数阶线性方程的稳定性理论给出了实现同步的几个充分条件,数值模拟说明了所给方法的有效性。 Chaos modified projective synchronization of the fractional Lorenz system is theoretically and numerically studied by three different methods. The sufficient conditions for achieving synchronization of this fractional differential system are derived by using the stability criterion of fractional linear equation. Numerical simulations show the effectiveness of the proposed methods.
机构地区 南昌大学数学系
出处 《南昌大学学报(工科版)》 CAS 2009年第1期22-28,32,共8页 Journal of Nanchang University(Engineering & Technology)
基金 江西省自然科学基金资助项目(2007GZS2126)
关键词 修正投影同步 分数阶 LORENZ混沌系统 Modified projective synchronization Fractional order Lorenz chaotic system
  • 相关文献

参考文献4

二级参考文献63

  • 1刘曾荣.关于同步的几个理论问题[J].自然杂志,2004,26(5):298-300. 被引量:8
  • 2刘曾荣.用结构适应实现不同系统之间的完全同步[J].应用数学与计算数学学报,2004,18(2):68-72. 被引量:6
  • 3Pecora L M,Carroll T L.Synchronizaton in chaotc systems[J].Phys Rev Lett,1990,64 (8):821-824.
  • 4MA Zhong-jun,LIU Zeng-rong,ZHANG Gang.A new method to realize cluster synchronization in connected chaotic networks[J].Chaos,2006,16(2):023103.
  • 5ZHENG Zhi-gang,HU Gang,HU Bambi.Phase slips and phase synchronization of coupled oscillators[J].Phys Rev Lett,1998,81(24):5318-5321.
  • 6Rosenblum M G,Pikovsky A S,Kurths J.From phase to lag synchronization in coupled chaotic oscillators[J].Phys Rev Lett,1997,78(22):4193-4196.
  • 7Yang S-S,Duan C-K.Generalized synchronization in chaotic systems[J].Chaos,Solitons,Fractals,1998,9(10):1703-1707.
  • 8YANG Xiao-song.On concept of synchronization in dynamical systems[J].Phys Lett A,1999,260(5):340-344.
  • 9ZHENG Zhi-gang,HU Gang.Generalized synchronization versus phase synchronization[J].Phys Rev E,2000,62(6):007882.
  • 10ZHANG Gang,LIU Zeng-rong,MA Zhong-jun.Generalized synchronization of different dimensional chaotc dynamical systems[J].Chaos,Solitons Fractals,2007,32(2):773-779.

共引文献17

同被引文献32

  • 1王发强,刘崇新.分数阶临界混沌系统及电路实验的研究[J].物理学报,2006,55(8):3922-3927. 被引量:55
  • 2刘扬正,姜长生,林长圣.一类四维混沌系统切换混沌同步[J].物理学报,2007,56(2):707-712. 被引量:22
  • 3褚衍东,李险峰,张建刚,常迎香.一个新自治混沌系统的计算机仿真与电路模拟[J].四川大学学报(自然科学版),2007,44(3):596-602. 被引量:24
  • 4Zheng M G, Cheng H Y. Pragmatical generalized synchronization of chaotic systems with uncertain parameters by adaptive control [ J ]. Physica D, 2007,231 : 87 - 94.
  • 5Na C, Yuan W J, Si Y Z, Modefied prohective synchronization of chaotic systems with disterbances via active sliding mode control [ J ]. Commu Nonlinear Sci Numer Simulat ,2009.
  • 6王广瑞,于熙龄.陈式刚.混沌的控制,同步与利用[M].北京:国防工业出版社,2001.
  • 7CHU Yan-dong,LI Xian-feng,ZHANG Jian-gang,CHANG Ying-xiang.Nonlinear dynamics analysis of a new autonomous chaotic system[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(9):1408-1413. 被引量:14
  • 8PODLUBNY I.Fractional differential equations[M].Academic Press:San Diego,CA,USA,1999.
  • 9HILFER R.Applications of fractional calculus in physics[M].World Scientific York:Singapore,2000.
  • 10KILBAS A,SRIVASTAVA H,TRUJILLO J.Theory and application of fractional differential equations[M].Elsevier:New York,NY,USA,2006.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部