期刊文献+

基于神经网络的U型材单轴柔性滚弯成形回弹预测 被引量:5

Springback Prediction of the U-section One-axle Rotary Shaping Based on Neural Network
下载PDF
导出
摘要 以铝合金U型材的回弹作为研究对象,采用正交实验法设计安排模拟实验,通过有限元软件成功地模拟了工件成形和回弹的实际过程,分析了影响工件滚弯成形的主要因素。将模拟的结果作为人工神经网络的训练样本,建立了单轴柔性滚弯成形过程的神经网络预测模型,并通过实验值检验预测结果;结果表明预测值和实验值的偏差很小。由此证明,将正交实验、数值模拟与神经网络3者相结合可以较好地预测单轴柔性滚弯成形的回弹,提高工艺参数设计效率。 One-axle rotary shaping with the elastic medium (RSEM) is a kind of advanced sheet metal forming process. Our purpose is to predict the springback of aluminous U-section. The orthogonal method is used to arrange the simulation experiments, and the forming and springback of the workpiece are simulated successfully with a finite element simulation software. The main factors that influence the RSEM are analyzed. The simulation results are used as the training samples of the artificial neural network ( ANN), and the ANN prediction model of RSEM process is set up. The prediction results are tested with the experiment data, and only a little tolerance exists between the two values. It demonstrates that the combination of orthogonal test, numerical simulation and neural network can effectively predict the springback of RSEM, and that the design efficiency of process parameters can be improved.
作者 金霞 刘海燕
出处 《机械科学与技术》 CSCD 北大核心 2009年第4期464-467,共4页 Mechanical Science and Technology for Aerospace Engineering
关键词 单轴柔性滚弯 神经网络 回弹 有限元模拟 预测 one-axle rotary shaping neural network springback finite element simulation prediction
  • 相关文献

参考文献5

  • 1闫静,左敦稳,王珉.双轴柔性滚弯技术的有限元分析[J].机械科学与技术,2003,22(2):203-205. 被引量:9
  • 2飞恩科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 3Inamdar M. Development of an artificial neural network to predict springback in air vee bending [J]. The International Journal of Advanced Manufacturing Technology, 2000,16(5) :376 -381
  • 4Hambli R, Guerln F. Application of a neural network for optimum clearance prediction in sheet metal blanking processes[ J]. Finite Elements in Analysis and Design, 2003,39:1039 - 1052
  • 5张彬,李东升,周贤宾.基于人工神经网络的拉形回弹预测技术研究[J].塑性工程学报,2003,10(2):28-31. 被引量:6

二级参考文献7

共引文献16

同被引文献44

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部