期刊文献+

一类两端刚性固定的奇异弹性梁方程的正解 被引量:4

Positive Solutions to a Class of Singular Elastic Beam Equations Rigidly Fixed at Both Ends
原文传递
导出
摘要 考察了一类奇异四阶两点边值问题的正解,其中允许非线性项奇异.主要工具是全连续算子的逼近定理和锥拉伸与锥压缩型的Guo-Krasnosel’skii不动点定理.在力学上这一类问题描述了两端刚性固定的弹性梁的形变.为了描述非线性项的增长,引入了非线性项的主要部分和高度函数.结果表明只要在某些有界集合上的主要部分的高度和高度函数的积分是适当的,该类问题可以具有n个正解,其中n是一个任意的正整数. We consider the positive solutions to a class of nonlinear fourth-order two-point boundary value problems, where the nonlinear term is allowed to be singular. Main foundation is the approximation theorem of completely continuous operators and the Guo-Krasnosel'skii fixed point theorem of cone expansion-compression type. In mechanics, this class of problems describe the deformation of an elastic beam rigidly fixed at both ends. In order to describe the growth of nonlinear term we introduce the principal and singular parts of nonlinear term. The results show that this class of problems can have n positive solutions provided the heights of principal part and the integrations of height function on some bounded sets are appropriate, where n is an arbitrary positive integer.
作者 姚庆六
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2009年第2期129-133,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(10571085)
关键词 奇异常微分方程 边值问题 正解 存在性 多解性 singular ordinary differential equation boundary value problem positive solution existence multiplicity
  • 相关文献

参考文献3

二级参考文献19

  • 1姚庆六.一般Lidstone边值问题的n个正解的存在性[J].数学学报(中文版),2005,48(2):365-376. 被引量:22
  • 2Qing Liu YAO.Existence,Multiplicity and Infinite Solvability of Positive Solutions for One-Dimensional p-Laplacian[J].Acta Mathematica Sinica,English Series,2005,21(4):691-698. 被引量:12
  • 3Aftabizadeh, A.R. Existence and uniqueness theorems for fourth order boundary value problems. J. Math.Anal. Appl. 116(2): 415-426 (1986)
  • 4Chong, Kung-chang. Infinite dimensional theory and multiple solution problems. Birkhauser, Boston,1993
  • 5Donal, O'Regan. Solvability of some forth (and higher ) order singular boundary value problems. J. Math.Anal. Appl., 161(1): 78-116 (1991)
  • 6Donal, O'Regan. Theorey of singular boundary value problems. World Scientific, Singapore, 1994
  • 7Hardy, G.H., Littlewood, J.E., Pblya, G. Inequalities. Cambrridge University Press, 2nd Edition 1952
  • 8Liu, Jiaquan, Xiong, Ming. Positive solutions for singular boundary problem of fourth order. (preprint)
  • 9Wei, Zhongli. Positive solutions of singular boundary value problems of fourth order differential equations.Acta Math., 43:715-722 (1999) (in Chinese)
  • 10Yang Yisong.Fourth-order two-point boundary value problems[].Proceedings of the American Mathematical Society.1988

共引文献24

同被引文献35

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部