期刊文献+

基于Web日志的个性化搜索引擎模型的发现 被引量:6

Discover personalized search engine model by mining Web logs
下载PDF
导出
摘要 个性化搜索是指同样的关键字对不同的人返回其感兴趣的搜索结果。对于不同的用户个体,同样的关键字可能有不同含义,如关键字"apple"被爱好音乐的人士理解为Apple iPod,但也会被健康饮食的人士理解为apple fruit。每次用户搜索关键字的过程,都会被记录在网站服务器的后台日志中。通过若干挖掘算法,将Web原始日志信息进行用户识别,会话分组后,提取单一用户多次会话中的搜索关键字关联规则,为实现个性化搜索引擎提供参考。 The Web site visitors' search keywords was recorded in the Web server log files. Analyzing and exploring associations in the search keywords of single Web user could provide the personal search results. This paper discovered the single user search keywords association rule by using algorithm SUSKARD.
作者 鲍钰
出处 《计算机应用研究》 CSCD 北大核心 2009年第5期1806-1809,共4页 Application Research of Computers
基金 国家"973"计划资助项目(2005CB321904)
关键词 WEB日志 个性化搜索 单用户搜索关键字关联规则发现算法 Web logs personal Web search SUSKARD algorithm
  • 相关文献

参考文献9

  • 1AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large database[ C ]//Proc of ACM SIGMOD International Conference on Management of Data. Washington DC: [s. n. ] ,1993:207-216.
  • 2PARK J S,CHEN M S,YU P S. An effective hash based algorithm for mining association rules [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. 1995 : 175-186.
  • 3SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algorithm for mining association rules in large database[ C]//Proc of the 21th International Conference on Very Large Database. 1995:432- 443.
  • 4PASQUIER N, BASTIDE Y, TAOUIL R, et al. Discovering frequent closed item sets for association rules[ C]//Proc of the 5th International Conference on Database Theory. 1999:398-416.
  • 5HAN l, PEI l, YIN Y. Mining frequent patterns without candidate generation[ C ]//Proc of ACM SIGMOD Internal Conference on Management of Data. Dallas, Texas : ACM Press,2000 : 1-12.
  • 6PASQUOER N, BASTIDE Y, TAOUIL R. Efficient mining of association rules using closed item set lattices [ J ]. tnformation System, 1999,24( 1 ) :25-46.
  • 7BERZAL F,CUBERO J-C, MARIN N,et al. TBAR:an efficient method for association rule mining in relational databases [ J ]. Data & Knowledge Engineering ,2001,37( 1 ) :47-64.
  • 8皮德常,秦小麟,王宁生.基于动态剪枝的关联规则挖掘算法[J].小型微型计算机系统,2004,25(10):1850-1852. 被引量:16
  • 9AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[ C]//Proc of International Conference on Very Large Databases. 1994:487-499.

二级参考文献6

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[C]. In: Proc. of the ACM SIGMOD Conference on Man agent of data, 1993,207-216.
  • 2[2]Pasquoer N, Bastide Y, Taouil R. Effictient mining of association rules using closed itemset lattices[J]. Information Systems, 1999,24(1): 25-46.
  • 3[3]Han Eui-hong, George Karypis & vipin Kumar. Scalable parallel data mining for mining association rules[J]. IEEE Trans. on Knowledge and Data Engineering, 2000, 12(3): 337-352.
  • 4[4]Zaki M J. Scalable Algorithms for association mining[J]. IEEE Trans. on Knowledge and Data Engineering,2000,12(3): 372-390.
  • 5[5]Fernando Berzal, Juan-Carlos Cubero, Nicolas Marin, TBAR: An efficient method for association rule mining in relational databases[J]. Data & Knowledge Engineering,2001,37, 47-64.
  • 6[6]Han Jia-wei, Micheline Kambr. Data mining concepts and techniques[M]. Beijing: Higher Education Press, 2001, 255-279 .

共引文献15

同被引文献67

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部