期刊文献+

二元Lenard-Jones流体混合物的桥函数

A New Bridge Function for Binary Lenard-Jones Mixture
下载PDF
导出
摘要 衡量桥函数近似准确程度的重要标志是其计算出的热力学量能否较好地满足热力学自恰性,本文提出了一个新的用于研究二元Lenard-Jones流体热力学性质的桥函数,该桥函数的函数形式采用修正Verlet桥函数形式,其宗量为间接相关函数与含密度和温度及浓度的微扰势之差,在高于临界温度的区域(约化温度从1.5到5、约化密度从0.01到0.89),对三不同的浓度(摩耳分数分别为0.125,0.5,0.875)分别用维里方程和压缩率方程计算了二元Lenard-Jones流体混合物的约化压强,计算结果表明,利用本文提出的桥函数计算得到的结果具有良好的热力学自恰性.通过引入含密度和温度及浓度的微扰势可以改善计算结果的热力学自恰性,从而提高计算其他热力学量的准确性. Whether the bridge function approximation used for calculating thermodynamics properties of liquids by O-Z equations is correct enough depends on the consistent extent of thermodynamics quantities calculated by Virial route and compressibility route respectively. This paper proposes a new bridge function for LJ binary mixture which has the same form as modified Verlet bridge function with its independent variable be replaced by the difference between indirect correlation function and perturbation potential modified by temperature and density as well as concentration. The reduced pressure calculated by both Virial e- quation and compressibility equation shows good agreement over the range of reduced temperature (from 1.35 to 5) and reduced density(from 0.01 to 0.89) in concentration 0. 125 and 0.5 as well as 0. 875. This work improves thermodynamics consistency of pressures compared to the result calculated by using Choudhury' s and Duh' s bridge function.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期21-25,共5页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 二元LJ流体混合物 积分方程理论 桥函数 热力学自恰性 Lenard-Jones binary mixture integral equation theory bridge function thermodynamics consistency
  • 相关文献

参考文献9

  • 1郑瑞伦,田维林.非简谐振动对二维流体热膨胀系数和压缩系数的影响[J].西南师范大学学报(自然科学版),1998,23(2):156-161. 被引量:2
  • 2Tomas Boublik, Ivo Nezbeda, Karel Hlavaty. Statistical Thermodynamics of Simple Liquids and Their Mixture [M]. New York: Elsevier Scientific Publishing Company, 1980.
  • 3Lee L L. An Accurate Integral Equation Theory for Hard Spheres: Role of the Zero-separation Theorems in the Closure Relation [J]. J Chem Phys, 1995, 103(21): 9388-9396.
  • 4Duh D M, Haymet A D J. Integral Equation Theory for Uncharged Liquids: The Lennard-Jones Fluid and the Bridge Function [J]. J Chem Phys, 1995, 103(7): 2625- 2634.
  • 5Duh D M, Henderson D. Integral Equation Theory for Lennard-Jones Fluids: The Bridge Function and Applications to Pure Fluids and Mixtures [J]. J Chem Phys, 1996, 104(17): 6742 -6754.
  • 6Sarkisov G. Approximate Integral Equation Theory for Classical Fluids [J]. J Chem Phys, 2001, 114(21) : 9496 -9505.
  • 7Choudhury N, Ghosh S K. Integral Equation Theory of Lennard-Jones Fluids: A Modified Verlet bridge Function Approach [J]. J Chem Phys, 2002, 116(19): 8517-8522.
  • 8Verlet L. An Empirical Closure for Hard Sphere Fluid [J]. Mol Phys, 1980, 41(1) ; 183 - 191.
  • 9Tapas R. Kunor and Srabani Taraphder. Molecular Dynamics Study of the Density and Dependence of Bridge Functions in Normal and Supercritical Lennard-Jones Fluids [J]. Phys Rev E, 2005, 72(3): 031201 -1 -031201 -9.

二级参考文献5

  • 1郑瑞伦,胡先权.非简谐振动对液氩的临界点与玻意耳线的影响[J].物理学报,1994,43(8):1254-1261. 被引量:7
  • 2郑瑞伦,Commun Theor Phys,1996年,26卷,1期,39页
  • 3郑瑞伦,西南师范大学学报,1993年,18卷,1期,26页
  • 4杜宜谨,物理学报,1983年,32卷,1期,96页
  • 5钱学森,物理力学讲义,1962年,172页

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部