期刊文献+

定常对流扩散反应方程非均匀网格上高精度紧致差分格式 被引量:15

A High Accuracy Compact Difference Scheme for Convection Diffusion Reaction Equation on Non-uniform Grid
下载PDF
导出
摘要 本文构造了非均匀网格上求解定常对流扩散反应方程的高精度紧致差分格式。我们首先基于非均匀网格上函数的泰勒级数展开,给出了一阶导数和二阶导数的高阶近似表达式;然后将模型方程变形,借助于对流扩散方程高精度紧致格式构造的方法,结合原模型方程,得到定常对流扩散反应方程的高精度紧致差分格式;最后给出的数值算例验证了本文格式高精度和高分辨率的优点。 A high accuracy compact finite difference scheme on the non-uniform grid is proposed to solve the convection-diffusion-reaction equation. Based on the Taylor series expansion, we first constructed the approximate expressions for the lst-order and 2nd-order derivative; then, by rewriting the model equation in the form of the convection diffusion equation and utilizing the model equation, we get the finite difference scheme and illustrate by four numerical examples. The numerical results show that the presented scheme has many advantages such as yielding more accurate numerical solutions, having high resolution for the large gradient changes of the unknown quantity, being suitable for both convection-dominant flows and diffusion-dominant flows and so on.
作者 田芳 田振夫
出处 《工程数学学报》 CSCD 北大核心 2009年第2期219-225,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10662006 10502026) 2008年宁夏高等学校科学技术研究项目
关键词 对流扩散反应方程 高精度紧致差分格式 非均匀网格 对流占优 边界层 convection diffusion reaction equation high accuracy compact scheme non-uniform grid convection domain boundary layer
  • 相关文献

参考文献6

  • 1Tian Z F, Dai S Q. High-order compact exponential finite difference methods for convection-diffusion type problems[J]. Journal of Computational Physics, 2007, 220(2): 952-974
  • 2Pillai A C R. Fourth-order expential finite difference methods for boundary value problems of convective diffusion type[J]. International Journal for Numerical Methods in Fluids, 2001, 7:87-106
  • 3Spotz W F. High-order compact finite difference schemes for computational mechanics[D]. University of Texas at Austin, Austin, TX, December 1995
  • 4Ge L, Zhang J. High accuracy iterative solution of convection diffusion equation with boundary layers on nonuniform grids[J]. Journal of Computational Physics, 2002, 171:560-578
  • 5李桂波,李明军,高智.对流扩散方程的变步长摄动有限差分格式[J].水动力学研究与进展(A辑),2005,20(3):293-299. 被引量:13
  • 6Sleijpen G L G, Van der Vorst H A. Hybrid bi-conjugate gradient methods for CFD problems[J]. Computational Fluid Dynamics Review, Hafez M, Oshima K(eds). Wiley: Chichester, 1995:457-476

二级参考文献9

共引文献12

同被引文献102

引证文献15

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部