期刊文献+

基于ALE方法的列车横风绕流动力学分析 被引量:8

Dynamic Analysis of Train in Cross-winds with the Arbitrary Lagrangian-Eulerian Method
下载PDF
导出
摘要 利用有限体积法对横风作用下列车周围的空气流场进行计算。结合车辆-轨道耦合动力学,采用任意拉格朗日-欧拉(ALE)方法处理列车与空气间存在的运动边界,实现了车辆系统动力学与计算流体力学之间的结合。以某国产客运列车为例,计算列车在20 m/s的横风作用下以160 km/h的速度运行时的动力学响应,给出列车周围的流场分布;分析了考虑与不考虑风-车之间流固耦合效应时,作用在车辆上的气动力和气动力矩的变化情况。结果表明,流固耦合效应对车体摇头力矩的影响比较大,而对于车体垂向、横向位移和加速度的影响甚微。 A numerical method is presented to analyze the train and air interaction problems. The Finite Volume Method (FVM) is applied in computation of the unsteady three-dimensional wind field around the train in crosswinds. The dynamical responses of the vehicles to the resulting aerodynamical loads and rail irregularities are simulated by a program based on the vehicle-track coupling dynamics. A co-simulation VSD/CFD is implemented by employing the Arbitrary Lagrangian-Eulerian(ALE) Method to deal with the moving boundary between train and air. As an example, in which a typical Chinese-made passenger train runs at the speed of 160 km/h in cross-winds, and the winds are normal to the moving direction of the vehicle with the speed of 20 m/s, the flow structure and air forces and moments are predicted. Results show that the fluid-structure interaction(FSI) has significant influence on the yawing moment of the car body. As to the vertical displacement, lateral displacement and acceleration of the intermediate car body, there are very little difference between the results considering the FSI effect and the results without considering the FSI effect.
出处 《铁道学报》 EI CAS CSCD 北大核心 2009年第2期120-124,共5页 Journal of the China Railway Society
基金 国家重点基础研究发展计划(973计划)课题(2007CB714706) 国家自然科学基金项目(50605053 50821063 50823004) 四川省"天府英才"工程创新团队计划
关键词 铁路车辆 空气动力学 横风 ALE方法 车辆-轨道耦合动力学 railway vehicle aerodynamics cross-wind Arbitrary Lagrangian-Eulerian(ALE) method vehicletrack coupling dynamics
  • 相关文献

参考文献12

二级参考文献41

  • 1蒋莉.反应堆部件中三维单相及两相流动与传热的研究.清华大学博士学位论文[M].,1996,6..
  • 2张来平.非结构网络、矩形非结构混合网格复杂无粘流场的数值模拟.气动中心博士论文[M].,1996,12..
  • 3[1]Alscher H, iguchi M, Eastham A R Boldea. Non-contact Suspension and Propulsion Technology [J]. Vehicle System Dynamics, 1983, 12(3): 259-289.
  • 4[2]Coffey HT, Chilton F, Hoppie LO. Magnetic Levitation of High-speed Ground Vehicles [C]. Proceedings of Applied Superconductive Conference, IEEE, New York, 1972: 62-75.
  • 5[3]Wyczalek FA. Maglev Transit Technology in Russia [C]. Proceedings of Maglev ′93, 13th International Conference on Magnetically-levitated Systems and Linear Drives, Argonne National Lab., Argonne IL, 1993: 88-93.
  • 6[4]Kolm HH, Thornton RD. Electromagnetic Flight [J]. Science of America, 1973, 229(4): 17-25.
  • 7[5]Coffey HT. Status and Review of the U.S. Maglev Program [C]. Proceedings of International Conference on Speedup Technology for Railway and Maglev Vehicles. Yokohama, Japan, 1993,123-129.
  • 8[6]Rhodes RG. Maglev Research in the UK [C]. Proceedings of Second International Seminar on Superconductive Magnetic Levitated Trains. T Ohtsuka and Mlguchi (eds). Miyazaki, Japan, 1982: 31-37.
  • 9[7]Rhodes RG, Mulhall BE. Magnetic Levitation for Rail Transport [M], New York, Clarendon Press Oxford, 1981.
  • 10[8]Chen SS, Rote DM, Coffey HT. Review of Vehicle/Guideway Interactions in Maglev Systems, in Fluid-Structure Interaction, Transient Thermal-Hydraulics, and Structural Mechanics[J]. ASME, New York, 1992, 231(3): 81-95.

共引文献268

同被引文献83

引证文献8

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部