期刊文献+

基于改进EMD方法的多分量信号分析 被引量:10

An improved empirical mode decomposition method for multicomponent signal represntation
下载PDF
导出
摘要 经验模式分解(EMD)是一种局部的,完全基于数据的自适应信号分解方法,非常适合于分析非平稳、多分量信号。针对经典EMD方法存在模式混淆,容易产生虚假频率分量的不足,该文提出了一种改进的EMD方法。该方法采用高阶极值点信息,通过逆向EMD筛选结果拟合最优包络均值。同时提出了一种基于正交性的筛选停止准则,保证分解结果的合理性。仿真信号和实测语音信号的实验结果证明了该方法的正确性和有效性,采用该方法能有效减小模式混淆,得到较为准确的分解结果。 Empirical mode decomposition (EMD) is a local, fully data driven and self-adaptive analysis approach. It is a powerful tool for analyzing multi-component signals. Aiming at the reduction of scale mixing and artificial frequency components, an improved scheme was proposed for analysis and reconstruction of nonstationary and multicomponent speech signals. The improved EMD method uses higher order extrema and then the optimal envelope mean can be obtained with an inverse EMD scheme. A new sifting stop criterion was proposed based on the index of orthogonality. And finally, the mean square error criterion was used for performance evaluation. Experiments on simulated signals and actual sound signals proved the correctness and validity of the modified method. An exact decomposition result could be obtained using the improved EMD method with less scale mixing than using the standard EMD method. The proposed method has broad application potential in processing of speech signals, mechanical vibration signals and radar signals, etc.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第4期51-53,64,共4页 Journal of Vibration and Shock
关键词 经验模式分解 多分量信号 语音信号 筛选停止准则 empirical mode decomposition (EMD) multicomponent signal speech signal sifting stop criterion
  • 相关文献

参考文献12

  • 1McAulay R, Quatieri T. Speech analysis/synthesis based on a sinusoidal representation [ J ]. IEEE Trans. on Acoustics, Speech, Signal Processing, 1986,34 (4) :744 - 754.
  • 2Cohen L. What is a multicomponent signal? [J] IEEE ICASSP, San Francisco, CA, USA, 1992,5:113-116.
  • 3Cohen L. Time-frequency analysis: theory and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, 1995.
  • 4Choi H I, Williams W J. Improved time-frequency representation of muhicomponent signalsusing exponential kernels [ J ]. IEEE Trans. on Acoustics, Speech, Signal Processing. , 1989,34(6) :862 -871.
  • 5Peleg S, Friedlander B. Muhicomponent signal analysis using the polynomial-phase transform [ J ]. IEEE Trans. on Aerospace and Electronic Systems, 1996,32( 1 ) :378 -387.
  • 6Gianfelici F, Biagetti G, et al. Multicomponent AM/FM Representations: An Asymptotically Exact Approach [ J]. IEEE Trans. on Audio, Speech, and Language Processing, 2007, 15(5) :823 -837.
  • 7Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis[M]. Proc. R. Soc. Lond. A, 1998,454:903 - 995.
  • 8Kizhner S, Blank K, Flatley T, et al. On certain theoretical developments underlying the Hilbert-Huang transform [ J ]. IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, March 2006.
  • 9Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2) :112 -114.
  • 10Yannis K, Stephen M. Enhanced empirical mode decomposition using a novel sifting-based interpolation points detection [J]. IEEE SSP, 2007:725 -729.

二级参考文献9

  • 1Cohen L.What is a multicomponent signal.IEEE Proc,ICASSP1992,5:V113-V116
  • 2Loughlin P J,Davidson K L.Modified Cohen-Lee time-frequency distributions and instantaneous bandwidth of multicomponent signals.IEEE Transactions on Signal Processing,2001,49(6):1153 -1165
  • 3Boashash B.Estimating and interpreting the instantaneous frequency of a signal-Part 1:Fundamentals.IEEE Proc,1992,80(4):539-568
  • 4Boashash B.Estimating and interpreting the instantaneous frequency of a signal-Part 2:Algorithms and applications.IEEE Proc,1992,80(4):540-568
  • 5Norden E Huang,Zheng Shen,Steven R Long,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear non-stationary time series analysis.Proc R Soc London Ser A,1998,454:903-995
  • 6Han C,Guo H,Wang C,et al.A novel method to reduce speckle in SAR images.International Journal of Remote Sensing,2002,23(23):5095-5101
  • 7Gloersen P,Huang N.Comparison of interannual intrinsic modes in hemispheric sea ice covers and other geophysical parameters.IEEE Transactions on Geoscience and Remote Sensing,2003,41(5):1062-1074
  • 8Liang H L,Lin Q H,Chen J D Z.Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal reflux disease.IEEE Transactions on Biomedical Engineering,2005,52(10):1692-1701
  • 9张郁山,梁建文,胡聿贤.应用自回归模型处理EMD方法中的边界问题[J].自然科学进展,2003,13(10):1054-1059. 被引量:74

共引文献25

同被引文献89

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部