期刊文献+

中文网络客户评论的产品特征挖掘方法研究 被引量:130

Mining features of products from Chinese customer online reviews
下载PDF
导出
摘要 随着互联网的广泛应用,在Blog、BBS、Wiki等网络站点中出现了大量的针对商品或服务的客户评论,这些客户评论中所包含的丰富信息,对企业管理具有重要的价值.通过数据挖掘算法对客户针对某一产品的大量评论进行分析,可以挖掘出这些产品的主要特征,并有望进一步发现客户对这些特征的意见和态度.在英文世界中已经有学者开始对这一研究进行探索,然而由于语言结构等方面的差异,英文的研究成果尚无法直接应用于中文客户评论的挖掘中.本研究针对中文的特点,提出了面向中文的客户评论挖掘方法.该方法基于改进关联规则算法实现了针对中文产品评论的产品特征信息挖掘.本研究采用通过互联网获得的针对手机、数码相机、书籍等5种产品的评论语料,对该方法进行了数据实验,实验结果初步验证了该方法有效性. Nowadays, more and more customers read online reviews on products before making the decision of purchase. It is also a common practice for merchants and manufacturers to get useful feedback from reviews written by their customers on products and associated services. Therefore, mining features of products from online reviews has emerged to be an important research topic. However, most present studies focused mainly on English reviews. As China becomes a potential e-commerce market in the world, Chinese have already been to become one of the most important group of customers. The numbers of Chinese online reviews in- creased greatly in recent years. It makes the study of features retrieved from Chinese reviews imperatively im- portant. The techniques used for English reviews can hardly be applied directly to Chinese reviews due to the differences in characteristics between these two languages. Association rule based methods for products' fea- ture retrieving to English reviews were modified and improved to fit Chinese reviews in this study. Experiments demonstrate the validity of this new method.
出处 《管理科学学报》 CSSCI 北大核心 2009年第2期142-152,共11页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(70771032,70501009) 香港理工大学研究基金资助项目(G-YX93)
关键词 用户评论 产品特征 关联规则 数据挖掘 customer reviews product features association rule data mining
  • 相关文献

参考文献4

二级参考文献54

  • 1王永贵,董大海.客户关系管理的研究现状、不足和未来展望[J].中国流通经济,2004,18(6):52-56. 被引量:52
  • 2黄劲松,赵平,王高,陆奇斌.中国顾客重复购买意向的多水平研究[J].管理科学学报,2004,7(6):79-86. 被引量:45
  • 3[1]Turney P D,Littman M L.Measuring praise and criticism:Inference of semantic orientation from association.ACM Transactions on Information Systems,2003,21(4):315 -346.
  • 4[2]Turney P D.Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews.In:Proceeding of Association for Computational Linguistics 40th Anniversary Meeting.Philadelphia:ACU,2002:417-424.
  • 5[3]Chaovalit P,Zhou Lina.Movie review mining:A comparison between supervised and unsupervised classification approaches.In:Proceedings of the 38th Hawaii International Conference on System Sciences.Big Island,Hawaii:IEEE,2005:1 - 9.
  • 6[4]Vapnik V N.The Nature of Statistical Learning Theory.New York:Springer,1998.
  • 7[5]Fei Z C,Liu J,Wu G F.Sentiment classification using phrase patterns.In:Proceedings of the 4th International Conference on Computer and Information Technology (CIT'04).Wuhan,China:IEEE,2004:1-6.
  • 8[6]Pang B,Lee L,Vaithyanathan S.Thumbs up?Sentiment classification using machine learning techniques.In:Proceeding of 2002 Conference on Empirical Methods in Natural Language.Philadelphia:Association for Computational Linguistics,2002:79 - 86.
  • 9[7]Brill E.Some advances in transformation-based part of speech tagging.In:Proceedings of the 12th National Conference on Artificial Intelligence.Menlo Park:AAAI Press,1994:722-727.
  • 10[8]Hatzivassiloglou V,McKeown K R.Predicting the semantic orientation of adjectives.In:Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL.Madrid:Morgan Kaufmann,1997:174 - 181.

共引文献171

同被引文献1300

引证文献130

二级引证文献1271

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部