期刊文献+

基于Elman神经网络变风量空调系统研究 被引量:2

Simulation of VAV Air-conditions System Based on Elman Neural Network
下载PDF
导出
摘要 变风量空调控制系统具有非线性和动态特性。目前,在VAV空调控制领域应用最广泛的神经网络是静态前馈Bp神经网络,而在多层前向Bp网络中引入特殊关联层,形成有"记忆"能力的Elman神经网络,可以映射系统的非线性和动态特性。其在网络训练算法中,采用自适应学习速率梯度下降反向传播算法,显著提高了网络的训练速率,有效抑制了网络陷入局部最小点。文中分别采用Bp神经网络与Elman神经网络建立模型,对VAV空调系统的少量参数的数据进行仿真预测,经比较分析,证明后者具有收敛速度快、预测精度高的特点。 VAV air-condition systems is of the character of nonlinear and dynamic. Nowadays, the neural network which is used the most extensively is static BP neural network. An Elman neural network, which has a special correlation layer is appended to hidden layer of Bp network, can map nonlinear and dynamic behaviors. In the training algorithm of the network, a back-propagation algorithm with adaptive learning speed and momentum gradient failing is used, which can obviously prevent the network to trap in local minimum. The model tested by actual data from VAV air-condition system is established by using both BP network and Elman neural network .By analyzing and comparing, the latter features quick convergence speed and high forecasting precision.
出处 《自动化与仪表》 北大核心 2009年第4期35-38,共4页 Automation & Instrumentation
基金 湖南省自然科学基金资助项目(02JJY203) 中南林业科技大学青年科学研究基金重点项目(07010A)
关键词 ELMAN神经网络 BP神经网络 VAV空调系统 Elman neural network BP neural network variable air volume(VAV) air-conditions system
  • 相关文献

参考文献4

二级参考文献12

  • 1陈艳平,安世奇,孙明.变风量空调系统中的室温模糊自适应控制[J].微计算机信息,2005,21(07S):73-75. 被引量:8
  • 2王翠华,战洪仁,寇丽萍,张先珍,王立鹏,李雅侠.建立变风量空调房间仿真模型的一种简便方法[J].沈阳化工学院学报,2005,19(3):220-223. 被引量:1
  • 3姜雪辉,余波,张春辉,雷恒,马廷卫.基于Matlab的变风量空调系统的仿真[J].机械工程与自动化,2006(1):80-82. 被引量:5
  • 4Bryson A E. Dynamic Optimization. Menlo Park, CA:Addison-Wesley-Longman, 1999
  • 5Seong C, Widrow t3. Neural dynamic optimization for control systerrks-Part Ⅱ, theory. IEEE Trans on Systems,Man, and Cybernetics, 2001, 31(4):490- 501
  • 6Carlos R G, Miguel V R. Decoupled control of temperature and relative humidity using a variable-airvolume HVAC system and non-interacting control. In:Proceedings of the 2001 IEEE International Conference on Control Applications. Mexico City, 2001. 11471151
  • 7Bryson A E.Dynamic Optimization.Menlo Park,CA: Addison-Wesley-Longman,1999
  • 8Seong C, Widrow B. Neural dynamic optimization for control systems-Part Ⅱ, theory. IEEE Trans on Systems, Man, and Cybernetics, 2001, 31(4):490-501
  • 9Carlos R G, Miguel V R. Decoupled control of temperature and relative humidity using a variable-air volume HVAC system and non-interacting control. In: Proceedings of the 2001 IEEE International Conference on Control Applications. Mexico City, 2001. 1147-1151
  • 10吴爱国,高德云.VAV空调系统的智能控制[J].制冷学报,1999,20(1):11-16. 被引量:21

共引文献13

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部