期刊文献+

太阳系真实力模型下Halo轨道的寻找 被引量:1

Searching for Halo Orbits in Real Solar System Model
下载PDF
导出
摘要 在总结现阶段共线平动点附近周期和拟周期轨道寻找方法的基础上,在JPL星历提供的真实力模型下利用目标轨道法(Target Shooting Method)实现了Halo轨道的寻找。即利用Lagrange乘数法作为迭代工具,利用圆型限制性三体问题下的分析解结果作为迭代初始值,迭代出真实力模型下的拟Halo轨道。重点构建了真实力模型下的虚拟平动点准惯性坐标系,极大地简化了轨道坐标从CRTBP模型向真实力模型的转换,加快了迭代收敛速度。 The searching methods for periodic and quasi-periodic orbits were summarized firstly. Then the Target Shooting method was realized in the real solar system model to search for Halo orbit, using Lagrange iterative method to refine the initial orbit supplied by CRTBP analytical solution. The attention was paid to the construction of Pseudo-Libration Point Inertial Coordinate, which simplified the orbits' transform from CRTBP to the real solar system model, and speeded up the iterative convergence.
出处 《测绘科学技术学报》 北大核心 2009年第2期144-147,共4页 Journal of Geomatics Science and Technology
基金 信息工程大学测绘学院研究生创新创优基金
关键词 共线平动点 HALO轨道 JPL星历 目标轨道法 LAGRANGE乘数法 collinear libration point Halo orbit JPL ephemeris target shooting method Lagrange multiplier method
  • 相关文献

参考文献10

  • 1SAMANTHA I,INFELD.Optimization of mission design for constrained libration point space missions[D].California:Stanford University,2005.
  • 2GUANGYU LI,ZHAOHUA YI.Methods For Orbit Optimazation For The Lisa Gravitational Wave Observatory[J].International Journal of Modern Physics D,2007,223(6):147-160.
  • 3RICHARDSON D L,CARY N D.A Uniformly Valid Solution for Motion About the Interior Libration Point of The Perturbed Elliptic-Restrictd Problem[C]// AAS Paper,1975.
  • 4RICHARDSON D L.Analytic construction of Periodic Orbits about the collinear points[J].Celestial Mechanics,1980,22:241-253.
  • 5MONDELO J M.Contribution to the Study of Fourier Methods for Quasi-Periodic Functions and the Vicinity of the Collinear Libration Points[D].Barcelona:Barcelona University,2002.
  • 6JORBA A,MASDEMONT J.Dynamics in the Centre Manifold of the Collinear Points of the Restricted Three Body Problem[J].Physics D,1999,132:189-213.
  • 7HOWELL K C,PERNICKA H J.Numerical Determination of Lissajous Trajectories in the Restricted Three-Body Problem[J].Celestial Mechanics and Dynamical Astronomy,1987,41:107-124.
  • 8JORBA A.A methodology for the Numerical Computation of Normal Forms,Centre Manifolds and First Integrals of Hamiltonion systems[J].Experiment Math,1999,8 (2):155-195.
  • 9VILLAC B F,SCHEERES D J.A Simple Algorithm to Compute Hyperbolic Invariant Manifolds Near L1 and L2[C]// AAS Paper,2004.
  • 10GOMEZ G,MASDEMONT J,SIMO C.Quasi Halo Orbits Associated With Libration Points[J].Journal of Astronautical Sciences,1998,42(2):135-176.

同被引文献17

  • 1Farquhar R W. The control and use of libration point satellites[D]. Stanford: Stanford University, 1968.
  • 2Qian Y, Hwang I, Jing W. New dynamic model for lunar probe and its application to quasi periodic orbit about the translunar li bration point [ C] //Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 2012:753 - 770.
  • 3Folta D, Sweetser T. ARTEMIS mission overview: from con- cept to operations[C]//Proc, of the AAS/AIAA Astrodyna- mics Specialist Conference, 2012 : 1629 - 1645.
  • 4Richardson D L. Analytic construction of periodic orbits about the collinear points[J]. Celestial Mechanics, 1980,22(1) : 241 - 253.
  • 5Farquhar R W. A quasi-periodic orbit about the translunar libra tion[J]. Celestial Mechanic, 1973,7(1) : 458 - 473.
  • 6Kim M. Lyapunov and quasi-periodic orbits.about L2 [C]//Proc. of theAIAA/AASAstrodynamics Specialist Conference, 2001 : 1 - 18.
  • 7Howell K C. A numerical determination of Lissajous trajectories in the restricted three body problem[J]. Celestial Mechanics, 1988, 41(1):107-124.
  • 8Folta D C, Pavlak T A, Howell K C, et al. Stationkeeping of Lissajous trajectories in the earth-moon system with applica- tions to ARTEMIS[C]//Proc. of the 20th AAS/AIAA Space Flight Mechanics Meeting, 2010 : 193 - 208.
  • 9Pavlak T A, Howell K C. Strategy for long-term libration point orbit stationkeeping in the earth moon system[C]//Proc. of the AAS/AIAA Astrodynamics Specialist Conference, 2012: 1717-1734.
  • 10Andreu M A, Simo C. Translunar Halo orbits in the quasi- bicircular problem[J]. Nato Advanced Science Institutes Se- ries, 1997 : 309 - 314.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部