期刊文献+

电动Stewart平台分散子系统不确定性加权函数选择

Selection of uncertainty weighting function for decentralized subsystems of an electrical Stewart platform
下载PDF
导出
摘要 以降低电动Stewart平台两输入两输出子系统不确定性描述的保守性为目的,提出一种不确定性加权函数选择方法.首先通过机理分析,确定以反馈形式来描述平台子系统中低频的结构不确定性,并得到具有3个待定参数的加权函数.然后给出标称模型输出与实验数据相匹配的条件,由此利用实验数据优化加权函数中的待定参数.最后为方便控制器设计,将系统不确定性描述化为统一的表达形式.所提方法在描述系统不确定性时,尽可能将模型中的已知部分分离出来,并通过实验数据优化加权函数中的待定参数,从而使得不确定性描述的保守性最小。 To reduce the conservation in describing the uncertainty in the double input/double output (DIDO) subsystems of an electrical Stewart platform, we propose a method for selecting the weighting function. First, the structured uncertainty at low and middle frequencies is described in a feedback format based on the model analysis, and a weighting function of 3 undetermined parameters is obtained. Secondly, a criterion is proposed for matching the output with the experiment data; this criterion is then used for optimizing the parameters in the weighting function. Finally, the system uncertainty is transformed into a uniform expression for control design. Since the deterministic part of the system has been separated as far as possible, and the parameters of the weighting function have been optimized with using experiment data, the proposed method for uncertainty description has been rendered less conservative.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第4期415-419,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(60674043)
关键词 STEWART平台 模型不确定性 加权函数 鲁棒控制 Stewart platform model uncertainty weight function robust control
  • 相关文献

参考文献7

二级参考文献27

  • 1何景峰,叶正茂,姜洪洲,丛大成,韩俊伟.基于关节空间模型的并联机器人耦合性分析[J].机械工程学报,2006,42(6):161-165. 被引量:27
  • 2UGRINOVSKII V A, PETERSEN I R, SAVKIN A V, et al. Decentralized state-feedback stabilization and robust control of uncertain large,so.ale systems with integrally constrained interconnections[J].Systems & Control Letters, 2000, 40(2): 107 - 119.
  • 3LABIBI B, LOHMANN B, KHAKI S. Robust decentralized stabilization of large-scale systems via eigenstructure assignment[J]. Int J of Systems Science, 2003, 34(6): 389 - 393.
  • 4CAO Y Y, SUN Y X, MAO W J. Output feedback decentralized stabilization: ILMI approach[J]. Systems & Control Letters, 1998, 35(3): 183 - 194.
  • 5ZHAI G S, IKEDA M, FUJISAKI Y. Decentralized H∞ controller design: a matrix inequality approach using a homotopy method[J]. Automatica, 2001, 37(4): 565- 572.
  • 6CHEN N, IKEDA M, GUI W H. Design of robust H∞ control for interconnected systems: a homotopy method[J]. Int J of Control, Automation and Systems, 2005, 3(2): 143 - 151.
  • 7WANG Y Y, XIE L H, de SOUZA C E. Robust control of a class of uncertain nonlinear systems[J]. Systems & Control Letters, 1992, 19(2): 139- 149.
  • 8BOYD S P, GHAOUI L E, FERON E, et al. Linear Matrix Inequalities in Systems and Control Theory[M]. Philadelphia, PA: SIAM, 1994.
  • 9WANG Y, BERNSTEIN D S, WATSON LT. Probability-one homotopy algorithms for solving the coupled Lyapunov equations arising in reduced-order H2/H∞ modeling, estimation and control[J]. Applied Mathematics and Computation, 2001, 123(2): 155 - 185.
  • 10WATSON L T. Globally convergent homotopy methods: a tutorial[J]. Applied Mathematics and Computation, 1989, 31:369 - 396.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部