摘要
在该文中,作者利用山路引理、势能估计、截断函数等技巧研究了超二次凸二阶Hamilton系统的极小周期解,从而在势能函数是凸的情况下解决了Rabinowitz关于极小周期解的猜测。
In this paper, the authors study the minimal periodic solution of the superquadratic convex second order Hamiltonian system through the Mountain Pass Lemma, the estimate for potontial energy, the techniques of truncation functional. We solve the Rabinowitz's conjecture about the minimal period under the special case that the potential functional is convex.
出处
《重庆邮电学院学报(自然科学版)》
1998年第1期64-66,72,共4页
Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)