期刊文献+

一种变步长的自适应特征值分解时延估计方法

Variable step-size AED for time delay estimation
下载PDF
导出
摘要 在房间声场环境下基于传声器阵列的说话人定位中,时延估计算法是其中的关键步骤。与其它常用时延估计方法相比,自适应特征值分解(Adaptive Eigenvalue Decomposition,AED)时延估计算法因其优越的抗混响性能受到越来越多的关注。但在受噪声和混响干扰的语音条件下,传统的自适应特征值分解算法收敛速度较慢,对初值敏感。通过引进动量因式,提出了一种变步长的特征值分解算法,通过理论分析和仿真实验,证实了新算法的收敛性能要优于传统的特征值分解算法,节省收敛时间,使算法的整体性能有所提高。 To realize speaker localization in a room, time delay estimation (TDE) based on microphone arrays is important. Compared to other TDE algorithms, adaptive eigenvalue decomposition (AED) algorithm gets attention for it is robust under reverberation environment. However, the conventional AED algorithm has sluggish convergence when speech signal is with noise and reverberation. Through analyzing the convergence of AED and introducing a momentum factor, a variable step-size AED algorithm is proposed. Theoretical analysis and simulation experiment show that the new algorithm is superior to original AED in saving time of convergence, which improves performance of the algorithm.
出处 《声学技术》 CSCD 2009年第2期137-141,共5页 Technical Acoustics
基金 中国科学院科技创新计划项目(KGCX2-YX-607) 国家科技支撑计划项目(2008BA150B08)
关键词 时延估计 自适应特征值分解 动量因式 收敛性 time delay estimation(TDE) adaptive eigenvalue decomposition(AED) momentum factor convergence
  • 相关文献

参考文献8

  • 1崔玮玮,曹志刚,魏建强.声源定位中的时延估计技术[J].数据采集与处理,2007,22(1):90-99. 被引量:92
  • 2Jacob Benesty. Adaptive eigenvalue decomposition algorithm for passive acoustic source localization[J]. J. Acoust. Soc. Am., 2000, 107(1): 384-391.
  • 3Yiteng Huang, Jacob Benesty, Gary W.Elko. Adaptive eigenvalue decomposition algorithm for realtime acoustic source localization system[A]. IEEE[C]. 1999, 937-940.
  • 4Simon Doclo, Marc Moonen. Robust adaptive time delay estimation for speaker localization in noisy and reverberant acoustic environments. Applied Signal Processing, 2003, 11:1110-1124.
  • 5李承智,曲天书,吴玺宏.一种改进的AEDA声源定位及跟踪算法[J].北京大学学报(自然科学版),2005,41(5):809-814. 被引量:10
  • 6Jingdong Chen, Jacob Benesty, Yiteng Huang. Time Delay Estimation in Room Acoustic Environments: An Overview[J]. Applied Signal Processing, 2006, 2006: 1-19.
  • 7刘迎东 刘岚.一种改进的LMS算法.中国水运,2007,7(5):142-144.
  • 8李芳,黄志勇,陈红伟.一种高性能、低运算量自适应滤波器算法[J].微电子学与计算机,2003,20(11):5-7. 被引量:4

二级参考文献49

  • 1[1]E Eweda. Analysis and Design of a Signed Regressor LMS Algorithm for Stationary and Nonstationary Adaptive Filtering with Correlated Gaussian Data. IEEE,Transactions on Circuits and System. 1990,37 (11):1367~1374.
  • 2[2]Martin T Hagan, Howard B Demuth, Mark Beale.Neural Network Design. PWS Publishing Company. 1996.
  • 3[3]Joseph Thomas. A Delayed Error Least Mean Squares Adaptive Filtering Algorithm and its Performance Analysis.IEEE Digital Signal Processing. 1996, 12(5), 386~389.
  • 4[4]A Gersho. Adaptive Filtering with Binary Reinforcement.IEEE Trans. 1984, 30(2), 191~199.
  • 5[5]C P Kwong, Dual Sign Algorithm for Adaptive Filtering,IEEE Trans, 1986,34 (12), 1272~1275 .
  • 6[6]E Eweda. Comment on Convergence Analysis and Design of an Adaptive Filter with Finite-Bit Power-of-Two Quantized Error. IEEE Trans.,Circuits and systems Ⅱ ,1995,42(7).
  • 7[7]S H Cho and V J Mathews. Tracking analysis of the sign algorithm in nonstationary environments. IEEE Trans,Acoust., Speech, Signal Processing, 1990 , 38 (12):2046~2057.
  • 8[8]E Eweda Transient Performance Degradation of the LMS,RLS, Sign, Signed Regressor, and Sign Sign Algorithms with Data Correlation IEEE Trans,1999, 8 (46):1055~1062.
  • 9Hahn W R, Tretter S A. Optimum Processing for Delay-Vector Estimation in Passive Signal Arrays. IEEE Trans Inform Theory, 1973, 19(5) :608-614.
  • 10Strobel N, Meier T, Rabenstein R. Speaker Localization Using Steered Filteredand-Sum Beamformers. Proc Vision and Visualization '99. Erlangen, 1999.

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部