摘要
由于工程实际中大部分工业对象均为非线性系统,滑模观测器应用研究的重点已从线性系统转至不确定非线性系统。针对一类非线性满足Lipschitz条件,而不确定部分为有界函数的不确定非线性系统,提出一种滑模变结构观测器设计方案,将基于线性系统提出的Walcott-Zak观测器用于抑制非线性对系统的影响,而滑模变结构使得观测器对系统不确定性具有鲁棒性。对所设计观测器的稳定性进行了证明,并通过仿真验证了所提方法的有效性。
Due to most of practical industrial objects belonging to nonlinear systems, study attention on sliding mode observer has recently shifted from uncertain linear systems to nonlinear systems. A design of sliding mode ob- server is developed for a class of nonlinear systems with nonlinear part which satisfies Lipschitz condition and uncer- tain part which is a bounded function. The Walcott-Zak observer originally designed for linear systems is introduced to minimize the nonlinear effects on the considered system, while the use of sliding mode variable structure theory makes the system robust to the uncertainty. Following the fully proving of system stability, simulation studies demonstrate the effectiveness of the proposed strategy.
出处
《电子测量与仪器学报》
CSCD
2009年第4期60-64,共5页
Journal of Electronic Measurement and Instrumentation
基金
国家自然科学基金(编号:60835004,60774069)资助项目
湖南省自然科学基金(编号:07JJ3118)资助项目
关键词
滑模
非线性系统
观测器
sliding mode
nonlinear systems
observer