期刊文献+

一种基于线面包含关系的GML空间聚类算法 被引量:3

An algorithm for spatial clustering in GML data based on line-region inclusion relations
原文传递
导出
摘要 针对目前大多数空间聚类算法主要是针对关系数据且没有考虑空间拓扑关系相似性的问题,对基于空间拓扑关系的空间聚类方法进行研究.提出了一种基于线面包含关系的GML(geography markup language)空间聚类算法SCGML-LRI(spatial clustering in GML data based on line-region inclusion relations).算法将GML文档中线面空间对象的包含关系作为空间对象相似性度量准则,并用CLOPE算法对空间对象进行聚类.实验结果表明:算法SCGML-LRI能实现GML数据的空间聚类,并具有较高的效率. For solving the problem most spatial clustering algorithms deal with the relational data without consideration of the similarity of spatial topological relations. A method for spatial clustering based on spatial topological relations was put forth, and the algorithm SCGML-LRI for spatial clustering in GML data based on line-region inclusion relations was proposed. This algorithm considered the inclusion relations between line and region spatial objects as the similarity measurement criteria. The CLOPE algo- rithm was used for clustering of spatial objects. The experimental results showed that algorithm SCGML-LRI was effective and efficient.
作者 张丽 吉根林
出处 《山东大学学报(工学版)》 CAS 北大核心 2009年第2期21-25,共5页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(40771163 40871176)
关键词 空间聚类 拓扑关系 线面空间包含 GML spatial clustering topological relation line-region spatial inclusion GML
  • 相关文献

参考文献8

  • 1ESTER M, KRIEGEL H P, SANDER J, et al. A densitybased algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231.
  • 2SANDER J, ESIER M, KRIEGEL H P, et al. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications [ J]. Data Mining and Knowledge Discovery, 1998, 2(2) : 169-194.
  • 3XIANG Laisheng, GUO Yajun, LAN Tian. Topological cluster: a generalized view for density-based spatial clustering [ C]// International Conference on Management Science & Engineering(14th). Harbin, China: IEEE Service Center, 2007: 422-428.
  • 4苗建新,吉根林.GML文档结构聚类算法Clu-GML[J].南京大学学报(自然科学版),2008,44(2):188-194. 被引量:8
  • 5李宁宁,刘玉树.基于GIS的空间位置关系聚类研究与应用[J].微机发展,2004,14(6):8-9. 被引量:6
  • 6张骏,秦小麟.利用简化9交模型进行三维拓扑分析[J].计算机辅助设计与图形学学报,2006,18(12):1817-1823. 被引量:9
  • 7YANG Yiling, GUAN Xudong, YOU Jinyuan. CLOPE: a fast and effective clustering algorithm for transactional data[ C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Alberta, Canada: the ACM Press, 2002: 682-687.
  • 8孙贤斌,尹杰,肖本林,熊才权.线点包容检测算法[J].计算机与现代化,2008(10):14-17. 被引量:1

二级参考文献39

共引文献20

同被引文献16

  • 1张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 2Robinson J T.The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Index[C]//Proc.of ACM SIGMOD International Conference on Management of Data.New York,USA: ACM Press,1981: 10-18.
  • 3Henrich A,Six H,Widmayer P.The LSD Tree: Spatial Access to Multidimensional Point and Nonpoint Objects[C]//Proc.of the 15th International Conference on Very Large Data Bases.San Francisco,USA: Morgan Kaufmann Publishers Inc.,1989: 45-53.
  • 4Guttman A.R-trees: A Dynamic Index Structures for Spatial Searching[C]//Proc.of ACM SIGMOD International Conference on Management of Data.New York,USA: ACM Press,1984: 47-57.
  • 5Bechman N,Kriegel H P,Schneider R,et al.The R*-tree: An Efficient and Robust Access Method for Points and Rectangles[C]// Proc.of ACM SIGMOD International Conference on Management of Data.New York,USA: ACM Press,1990: 322-331.
  • 6Fu Yuchen,Hu Zhiyong,Guo Wei,et al.QR-Tree: A Hybrid Spatial Index Structure[C]//Proc.of International Conference on Machine Learning and Cybernetics.Xi’an,China: [s.n.],2003: 459-463.
  • 7Nievergelt J,Hinterberger H,Sevcik K C.The Grid File: An Adaptable Symmetric Multikey File Structure[J].ACM Trans.on Database Systems.1984,9(1):38-71.
  • 8Zhang Mingbo,Lu Feng,Chen Changxiu,et al.A Forced Transplant Algorithm for Dynamic R-tree Implementation[C]//Lecture Notes in Computer Science.[S.l.]: Springer,2006: 459-466.
  • 9Zhang Donghui,Xia Tian.A Novel Improvement to the R*-tree Spatial Index Using Gain/Loss Metrics[C]//Proc.of the 12th Annual ACM International Workshop on Geographic Information Systems.New York,USA: ACM Press,2004: 204-213.
  • 10苗建新,吉根林.GML文档结构聚类算法Clu-GML[J].南京大学学报(自然科学版),2008,44(2):188-194. 被引量:8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部