摘要
利用有限交换群G的自同构群A(G)的阶来刻划群G的结构,证明了当|A(G)|=24p2q(p,q是不同的奇素数)时,G至多有150型.
The structures of Abelian group G was discussed by order of automorphism group A( G)and all types of finite Abelian group G was obtained when the order of A(G) equals to 2^4p^2q(p,q are different odd primes). The following theorem is proved : let G be finite Abelian group, if |A(G)|=2^4p^2q (p, q are different odd primes ) , then G has at most 150 types.
出处
《信阳师范学院学报(自然科学版)》
CAS
2009年第2期161-164,171,共5页
Journal of Xinyang Normal University(Natural Science Edition)
基金
河南省自然科学基金项目(0511010200)
关键词
自同构群
交换群
群构造
欧拉函数
automorphism group
Abelian group
structure of group
Euler's function