期刊文献+

Pseudo-Anosov Mapping Classes and Their Representations by Products of Two Dehn Twists 被引量:1

Pseudo-Anosov Mapping Classes and Their Representations by Products of Two Dehn Twists
原文传递
导出
摘要 Let S be a Riemann surface of analytically finite type (p, n) with 3p-3+n 〉 0. Let a ∈ S and S = S - {a}. In this article, the author studies those pseudo-Anosov maps on S that are isotopic to the identity on S and can be represented by products of Dehn twists. It is also proved that for any pseudo-Anosov map f of S isotopic to the identity on S, there are infinitely many pseudo-Anosov maps F on S - {b} = S - {a, b}, where b is a point on S, such that F is isotopic to f on S as b is filled in.
作者 Chaohui ZHANG
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第3期281-292,共12页 数学年刊(B辑英文版)
关键词 Riemann surface Pseudo-Anosov map Dehn twist Teichmullerspace Bers fiber space 产品 测绘 硫同位素 有限型 黎曼面 无穷多 地图 映射
  • 相关文献

参考文献2

二级参考文献16

  • 1Chaohui ZHANG.Hyperbolic Mapping Classes and Their Lifts on the Bers Fiber Space[J].Chinese Annals of Mathematics,Series B,2007,28(1):55-66. 被引量:2
  • 2Beardon, A., The geometry of Discrete Groups, Springer-Verlag, New York, Heidelberg, Berlin, 1983.
  • 3Bers, L., Fiber spaces over Teichmüller spaces, Acta Math., 130, 1973, 89-126.
  • 4Bers, L., An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math., 141,1978, 73-98.
  • 5Bers, L., A remark on Mumford's compactness theorem, Israel J. Math., 12, 1972, 400-407.
  • 6Earle, C. J. and Kra, I., On holomorphic mappings between Teichmüller spaces, Contributions to Analysis,L. V. Ahlfors, et. al. (eds.), Academic Press, New York, 1974, 107-124.
  • 7Faithi, A., Laudenbach, F. and Poenaru, V., Travaux de Thurston sur les surfaces, Asterisque, 66-67,1979.
  • 8Kra, I., On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math., 146, 1981,231-270.
  • 9Marden, A. and Strebel, K., Pseudo-Anosov Teichmüller mappings, J. Anal. Math., 46, 1986, 194-220.
  • 10Matelski, J. P., A compactness theorem for Fuchsian groups of the second kind, Duke Math. J., 43, 1976,829-840.

共引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部