期刊文献+

Semi-empirical Likelihood Confidence Intervals for the Differences of Quantiles with Missing Data 被引量:3

Semi-empirical Likelihood Confidence Intervals for the Differences of Quantiles with Missing Data
原文传递
导出
摘要 Detecting population (group) differences is useful in many applications, such as medical research. In this paper, we explore the probabilistic theory for identifying the quantile differences .between two populations. Suppose that there are two populations x and y with missing data on both of them, where x is nonparametric and y is parametric. We are interested in constructing confidence intervals on the quantile differences of x and y. Random hot deck imputation is used to fill in missing data. Semi-empirical likelihood confidence intervals on the differences are constructed. Detecting population (group) differences is useful in many applications, such as medical research. In this paper, we explore the probabilistic theory for identifying the quantile differences .between two populations. Suppose that there are two populations x and y with missing data on both of them, where x is nonparametric and y is parametric. We are interested in constructing confidence intervals on the quantile differences of x and y. Random hot deck imputation is used to fill in missing data. Semi-empirical likelihood confidence intervals on the differences are constructed.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第5期845-854,共10页 数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (10661003) the Natural Science Foundation of Guangxi (0728092)
关键词 empirical likelihood confidence interval QUANTILE missing data hot deck imputation empirical likelihood, confidence interval, quantile, missing data, hot deck imputation
  • 相关文献

参考文献13

  • 1Qin, Y. s., Zhao, L. C.: Empirical likelihood ratio confidence intervals for the differences of quantiles of two populations. Chinese Ann. Math. (Set. A), 18, 687-694 (1997).
  • 2Little, R. J. A., Rubin, D. B.: Statistical analysis with missing data, 2nd edition, John Wiley &: Sons, New York, 2002.
  • 3Wang, Q., Rao, J. N. K.: Empirical likelihood-based inference in linear models with missing data. Scand. J. Statist., 29, 563-576 (2002).
  • 4Wang, Q., Rao, J. N. K.: Empirical likelihood-based inference under imputation for missing response data. Ann. Statist., 30, 896-924 (2002).
  • 5Hartley, H. O., Rao, J. N. K.: A new estimation theory for sample surveys. Biometrika, 55, 547-557 (1968).
  • 6Thomas, D. R., Grunkemeier, G. L.: Confidence interval estimation of survival probabilities for censored data. J. Amer. Statist. Assoc., 70, 865-871 (1975).
  • 7Owen, A. B.: Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237-249 (1988).
  • 8Owen, A. B.: Empirical likelihood ratio confidence regions. Ann. Statist., 18, 90-120 (1990).
  • 9Rao, J. N. K.: On variance estimation with imputed survey data. J. Amer. Statist. Assoc., 91, 499-520 (1996).
  • 10Chen, J., Rao, J. N. K., Sitter, R. R.: Efficient random imputation for missing data in complex surveys. Statistica Sinica, 10, 1153-1169 (2000).

同被引文献6

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部