期刊文献+

非线性互补约束均衡问题的一个SQP算法 被引量:9

An SQP Algorithm for Mathematical Programs With Nonlinear Complementarity Constraints
下载PDF
导出
摘要 提出了一个求解非线性互补约束均衡问题(MPCC)的逐步逼近光滑SQP算法.通过一系列光滑优化来逼近MPCC.引入l1精确罚函数,线搜索保证算法具有全局收敛性.进而,在严格互补及二阶充分条件下,算法是超线性收敛的.此外,当算法有限步终止,当前迭代点即为MPEC的一个精确稳定点. A successive approximation and smooth SQP method for mathematical programs with nonlinear complementarity constraints (MPCC) is described. A class of smooth programs to approximate the MPCC was introduced. Using an ll penalty function, the line search assures the global convergence, while superlinear convergence rate is shown under strictly complementary conditions and the second order sufficient condition. Moreover, it was proved that the current iterated point is an exact stationary point of the MPEC when the algorithm terminates finitely.
出处 《应用数学和力学》 CSCD 北大核心 2009年第5期613-622,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10501009 10771040) 广西壮族自治区自然科学基金资助项目(0728206 0640001) 中国博士后基金资助项目(20070410228)
关键词 均衡问题 序列二次规划算法 逐步逼近 全局收敛 超线性收敛速率 MPEC SQP algorithm successive approximation global convergence superlinear convergence rate
  • 相关文献

参考文献10

  • 1Outrate J V, Kocvare M, Zowe J. Nonsmooth Approach to Optimization Problems With Equilibrium Consrtaints[ M]. The Netherlands: Kluwer Academic Publishem, 1998.
  • 2Jiang H, Ralph D. Smooth SQP method for mathematical programs with nonlinear complementarity constraints[ J ]. SIAM J Optimization, 2000,10(3) : 779-808.
  • 3Fukushima M, Luo Z Q, Pang J S. A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints[ J]. Comp Opti Appl, 1998, 10 (1) :5-34.
  • 4马昌凤,梁国平.A New Successive Approximation Damped Newton Method for Nonlinear Complementarity Problems[J].Journal of Mathematical Research and Exposition,2003,23(1):1-6. 被引量:1
  • 5朱志斌,罗志军,曾吉文.互补约束均衡问题一个新的磨光技术[J].应用数学和力学,2007,28(10):1253-1260. 被引量:4
  • 6Fukushima M, Pang J S. Some feasibility issues in mathematical programs with equilibrium constraints[J]. SIAMJ Optimization, 1998,8(3) : 673-581.
  • 7Panier E R, Tits A L. On combining feasibility, descent and superlinear convergence in inequality constrained optimization[ J]. Mathematical Programming, 1993,59(1) : 261-276.
  • 8Zhu Z B, Zhang K C. A superlineariy convergent SQP algorithm for mathematical programs with linear complementarity constraints[ J]. Applied Mathematics and Computation ,2005,172(1) : 222-244.
  • 9Panier E R, Tits A L. A stoerlinearly convergent feasible method for the solution of inequality constrained optimization problems[J]. SIAM J Control Optim, 1987,25(3) : 934-950.
  • 10Facchinei F, Dacidi S. Quadraticly and superlinearly convergent for the solution of inequality constrained op optimization problem[ J]. J Optim Theory Appl, 1995,85(2 ): 265-289.

二级参考文献17

  • 1JOSEPHY N H. Quasi-Newton methodsfor generalized equation [R]. Technique Summary Report, No. 1977, Math. Res. Center,Madison, WI 1979.
  • 2PANG J S, QI L. Nonsmooth equations: motivation and applications [J]. SIAM J.Opti., 1993,3:443 465.
  • 3QI L, CHEN X. A global converging successive approximation method for nonsmoothequations [J]. SIAM J. Control & Opti., 1995, 2:402 418.
  • 4ZHOU S Z, LID H, ZENG J P. A Successive Approximation Quasi-Newton Process forNonlinear Complementarity Problem [M]. Recent Advances in Non-smooth Optimization,WorldScientific Publishing Co Pte Ltd. 1995. 459 472.
  • 5PANG J S. Newton's method for B-differentiable equations [J]. Math. Oper. Res.,1998, 15:311-341.
  • 6PANG J S, CHAN D. Iterative methods for variational and complementarity problems[J].Math. Prog., 1982, 24: 284-313.
  • 7ZHOU S Z, YAN Q R. Kantoriovich theorem for nonlinear complementarity problems[J].Chinese Sci. Bull., 1991, 36
  • 8GRIEWANK A. The global convergence of Broyden-like methods with a suitable linesearch[J]. Journal of Australian Math. Society, Ser. B, 1986, 28: 75-92.
  • 9Luo Z Q, Pang J S, Ralph D, et al. Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints[J]. Mathematical Programming, 1996,75( 1 ) : 19-76.
  • 10Outrata J, Zowe J. A numerical approach to optimization problems with variational inequality constraints[ J]. Mathematical Programming, 1995,68( 1 ) :105-130.

共引文献3

同被引文献32

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部