期刊文献+

基于小波滤噪和iPLS的草莓近红外光谱糖度检测模型 被引量:7

Testing Model of Sugar Degree in Strawberry by Near Infrared Spectrum Based on Wavelet Denoising and iPLS
下载PDF
导出
摘要 [目的]获得精度高、鲁棒性强的草莓近红外光谱糖度检测模型。[方法]利用K-S(Kennard-Stone)方法划分样本集,并用小波滤噪法对草莓1000~2500nm近红外光谱进行预处理,最后用偏最小二乘法(PLS)和区间偏最小二乘法(iPLS)分别建立预测模型。[结果]采用区间偏最小二乘法将光谱划分为20个子区间,利用其中的第16个子区间建立的糖度模型效果最佳,其校正时的相关系数Rc和校正均方根误差RMSEC分别为0.9355和0.259,预测时的相关系数邱和预测均方根误差RMSEP分别为0.9202和0.305。[结论]用小波滤噪和联合区间偏最小二乘法所建立的草莓糖度模型不仅能有效地减少建模所用的变量数,缩短运算时间,而且预测能力和精度均得到提高。 [Objective] The research aimed to obtain the testing model of sugar content of near infrared spectrum in strawberry with high accuracy and strong robustness. [Method] The K-S (Kennard-Stone) method was used to divide the sample set and the wavelet noise filtering method was used to pretreat the near infrared spectrum at 1 000 - 500 nm in shawberry, at last the partial least squares(PLS)and interval partial least squares(iPIS)were used to set up the prediction model resp.. [Result] The spectrum was divided to 20 subinterval with the interval partial least squares and the effect of sugar content model established by their 16 subinterval was optimum.The correlation coefficient Re in correction and mot mean square enor of correction RMSEC were 0.935 5 and 0.259 resp.and the correlation coefficient Rp in forecast and the mot mean square error of forecast were 0.920 2 and 0.305 resp. [Conclusion]The strawberry sugar content model established by wavelet noise filtering method and interval partial least squares not only could decrease the variable number of modeling effectively and shorten the operation time, but also could improve the prediction ability and precision.
出处 《安徽农业科学》 CAS 北大核心 2009年第12期5752-5754,共3页 Journal of Anhui Agricultural Sciences
基金 国家863高科技项目(2008AA10Z2) 国家自然基金资助项目(30671199) 江苏省自然科学基金资助项目(BK2006707-1)
关键词 近红外光谱 草莓 糖度 区间偏最小二乘法 NIR spectroscopy Strawberry Sugu degree interval partial least square
  • 相关文献

参考文献1

二级参考文献17

  • 1褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:567
  • 2赵杰文,张海东,刘木华.利用近红外漫反射光谱技术进行苹果糖度无损检测的研究[J].农业工程学报,2005,21(3):162-165. 被引量:75
  • 3赵杰文,张海东,刘木华.简化苹果糖度预测模型的近红外光谱预处理方法[J].光学学报,2006,26(1):136-140. 被引量:55
  • 4Ann Peirs, Jeroen Tirry , Bert Verlinden et al.. Effect of biological variability on the robustness of NIR models for soluble solids content of apples [ J ]. Postharvest Biology and Technology, 2003, 28(3) : 269-280
  • 5O. Kleynen, V. Leemans, M.-F. Selection of the most efficient wavelength bands for "Jonagold" apple sorting[J]. Postharvest Biology and Technology, 2003, 30(1) : 221-232
  • 6I. Wayan Budiastra, Yoshio Ikeda, Takahisa Nishizu. Optical methods for quality evaluation of fruits (part 2)-prediction of individual sugars and malic acid concentrations of apples and mangoes by the developed NIR reflectance system[J].J. JSAM, 1998, 60(3): 117-128
  • 7V. Steinmetz, J. M. Roger, E. Molto et al.. On-line fusion of color camera and spectrophotometer for sugar content prediction of apples[J]. J. Agric. Engng. Res., 1999, 73(4): 207-216
  • 8K. H. S. Peiris, G. G. Dull, R. G. Leffler et al.. Spatial variability of soluble solids or dry-matter content within individual fruits, bulbs, or tubers : implications for the development and use of NIR spectrometric techniques[J]. Hori Science, 1999, 34(1) :114-118
  • 9Ann Peirs, J. Lammertyn, K. Ooms et al.. Prediction of the optimal picking date of different apple cultivars by means of VIS/ NIR-spectroscopy [J]. Postharvest Biology and Technology, 2000, 21(3):189-199
  • 10J. Lammertyn, Ann Peirs, Josse De Baerdemaeker et al.. Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment[J]. Postharvest Biology and Technology, 2000, 18(1): 121-132

共引文献43

同被引文献81

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部