期刊文献+

静电喷头雾化特性预测模型 被引量:7

Prediction Model for Atomization Performance of Electrostatic Spraying Nozzle
下载PDF
导出
摘要 将一种基于改进粒子群优化最小二乘支持向量机的预测模型引入静电喷雾雾化性能预测领域,并给出了相应的步骤和算法。该模型能方便地预测喷雾参数对喷头雾化性能的影响,有助于正确认识喷头雾化性能随喷雾参数的变化规律。通过具体实例及与其他几种预测方法的对比表明,在相同样本条件下,其模型构造速度比标准LS-SVM方法高近1个数量级,模型预测误差约为标准LS-SVM方法的50%,预测精度比常规BP模型高1个数量级。 On the basis of analyzing disadvantages of conventional prediction model, a novel prediction model based on modified PSO least square support vector machine was proposed. Based on the new model, the design steps and learning algorithm were given. The practical experimental results show that the construction speed of this modified PSO LS - SVM model is 10 times less than that of the LS - SVM model, while the prediction error is 50%. Moreover, compared with BP model, the prediction accuracy is about 10 times higher than that of the former. The effects of electrostatic spraying parameters on atomization performance of electrostatic spraying nozzle can be predicted with the limited test data. Thus the variation law of atomization performance of electrostatic spraying nozzle following electrostatic spraying parameters can be obtained.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2009年第4期63-68,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家“十一五”科技支撑计划资助项目(2006BAD08A1203) 安徽省教育厅青年教师资助项目(2007jq1126)
关键词 静电喷头 雾化性能 预测模型 改进粒子群优化最小二乘支持向量机 Electrostatic spraying nozzle, Atomization performance, Prediction model, ModifiedPSO least square support vector machine
  • 相关文献

参考文献13

  • 1任惠芳,韩学孟,王玉顺.气力式静电喷头雾化特性研究[J].山西农业大学学报(自然科学版),2003,23(2):148-151. 被引量:9
  • 2何雄奎,严苛荣,储金宇,汪健,曾爱军,刘亚佳.果园自动对靶静电喷雾机设计与试验研究[J].农业工程学报,2003,19(6):78-80. 被引量:146
  • 3Maski D.Spray chargeability studies and data modeling using electrostatic spraying system for drift mitigation[C].ASAE Annual International Meeting,Florida,Paper Number 051153,2005.
  • 4Kim C,Hung Y C.Development of a response surface model of an electronstatic spray system and its contributing parameters[J].Transactions of the ASABE,2007,50(2):583-590.
  • 5Wang X,Feng J C X.Development of empirical models for surface roughness prediction in finish turning[J].International Journal of Advanced Manufacturing Technology,2002,20(5):348-356.
  • 6Benardos P G,Vosniakos G C.Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiment[J].Robotics and Computer-integrated Manufacturing,2002,18(5):343-354.
  • 7Vapnik V N.The nature of statistical learning theory[M].New York:Spring-Verlag,1999.
  • 8Vapnik V N.An overview of statistical learning theory[J].IEEE Transaction Neural Networks,1999,10(5):988-999.
  • 9Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neura
  • 10Suykens J A K,Vandewalle J.Sparse least squares support vector machine classifiers[C]//European Symposium on Artificial Neural Networks,Bruges Belgium,2000:37-42.l Processing Letters,1999,9(3):293-300.

二级参考文献24

共引文献171

同被引文献147

引证文献7

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部