期刊文献+

基于公交IC卡数据信息的客流预测方法研究 被引量:4

Passenger Flow Volume Forecasting Method Based on Public Transit Intelligent Card(IC) Survey Data
下载PDF
导出
摘要 根据大连市公交IC卡的历史数据绘制公交线路客流曲线,采用有序聚类Fisher算法划分公交峰值区间,在具有典型特征的峰值区间内进行有针对性的公交客流调查,可得到实际客流数据样本。通过将公交IC卡客流数据与随车客流调查数据相结合,建立不同峰值条件下预测客流的回归方程,可实现对不同峰值区间内总体客流量的预测。 Administrative Office of Dalian, Abstract: By taking out historical data from Dalian public transit intelligent card database, the curve of passenger flow volume is introduced. With Fisher's sequence clustering method, the daily transit peak value interval is obtained. Then, a pointed passenger flow volume survey for transit peak value interval with typical characteristics is carried on to get data sample of practical passenger flow volume. By combining the passenger flow volume data based on the public transit intelligent card with which based on passenger flow survey, the regression equations for passenger flow volume forecasting in different cases of transit peak value interval are established in order to forecast the total passenger flow volume in different transit peak value intervals.
出处 《交通标准化》 2009年第9期115-119,共5页 Communications Standardization
基金 国家自然科学基金资助项目(70571007)
关键词 公交IC卡 有序聚类Fisher算法 公交客流调查 客流预测 public transit intelligent card(IC) Fisher's sequence clustering method passenger flow survey passenger flow volume forecasting
  • 相关文献

参考文献5

二级参考文献13

共引文献94

同被引文献59

  • 1戴霄,陈学武,李文勇.公交IC卡信息处理的数据挖掘技术研究[J].交通与计算机,2006,24(1):40-42. 被引量:23
  • 2曹小曙,薛德升,阎小培.城市交通运输地理发展趋势[J].地理科学,2006,26(1):111-117. 被引量:26
  • 3彭晗,韩秀华,田振中,秦朝举.公交IC卡数据处理的换乘矩阵构造方法研究[J].交通与计算机,2007,25(4):32-34. 被引量:5
  • 4Batty M. Invisible cities. Environment and Planning B: Planning and Design. 1990, 17: 127-130, doi: 10.1068/b170127.
  • 5Ahas R, Mark Ue. Location based services: New challenges for planning and public administration? Futures, 2005, 37: 547-561, doi: 10.1016/j.futures.2004.10.012.
  • 6Goodchild M F. Citizens as sensors: The world of volunteered geography. GeoJournal, 2007, 69(4): 211-221, doi: 10.1007/s 10708-007-9111 -y.
  • 7Newhaus F. Urban diary: A tracking project//UCL Working Paper Series. Paper 151. Available on line: http://discovery.ucl.ac.uk/19245/.
  • 8Jiang B, Yin J, Zhao S. Characterizing human mobility patterns in a large street network, Physical Review, 2009, E80 021136, doi: 10.1103/PhysRevE.80.021136.
  • 9Liu L, Andris C, Ratti C. Uncovering cabdrivers' behavior pattems from their digital traces Computers. Environment and Urban Systems, 2010, 34(6): 541-548, doi: 10.1016/j.compenvurbsys.2010.07.004.
  • 10Ratti C, Pulselli R M, Williams S et al. Mobile landscapes: Using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design, 2006, 33(5): 727-748, doi: 10.1068/b32047.

引证文献4

二级引证文献320

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部