期刊文献+

随机测试用例的优化技术研究

Optimizing technology research of random test case
下载PDF
导出
摘要 提出了一种基于粗糙集的不完备测试数据填补方法。该方法首先利用粗糙集中下近似集的性质对随机生成的测试数据进行填补,然后根据属性数据的取值概率函数求出的结果进行二次填补,从而完成对不完备测试数据的完备化处理,生成最优测试用例。采用本方法可以较好地反映待测系统所蕴含的规则,且可以避免测试数据的冲突。 This paper brought forward a testing data packing method of incomplete information system based on rough sets and grey system theory. First, this method takes advantage of the lower approximation in rough sets to do random producing testing data packing, and then, according to the value-taking probability of the attribute value, finds the result to do the second packing, thus accomplishes the completion of incomplete information system, so producing great value test case. This method can adequately reflect the testing system rules and avoid the conflict in test data.
出处 《自动化与仪器仪表》 2009年第3期87-90,共4页 Automation & Instrumentation
基金 甘肃省自然科学基金项目(ZS031-A25-019-G)
关键词 软件测试 不完备数据 粗糙集 灰色理论 测试用例 Software testing Incomplete data Rough sets Grey system theory Test case
  • 相关文献

参考文献14

二级参考文献38

  • 1王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 2[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 3[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 4[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 5[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 6[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 7[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120
  • 8Lan Shu,Mo Zhi Wen,Hu Dan. Methods of learning rules based on rough set: LBR and LEM3 [ A ]. IFSA World Congress and 20th NAFIPS International Couference [C]. 2001,2:753 -756.
  • 9Bakar A A,Sulaiman M N,Othman M,et al. Fining minimal reduct with binary integer programming in data mining [A]. TENCON 2000 [C]. 2000,(2) :141 -146.
  • 10Felix R, Ushio T. Rough sets-based machine learning using a binary discernibility matrix [ A ]. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C]. 1999,1:299-305.

共引文献894

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部