期刊文献+

基于剪切不变的递归Contourlet变换图像去噪 被引量:2

Using Shear Invariant and Recursive Cycle Spinning for Image Denoising in Contourlet Domain
下载PDF
导出
摘要 根据综合剪切和递归Cycle Spinning技术,提出一种基于剪切不变的递归Contourlet变换图像去噪方法(RSICT)。为改善图像去噪由于缺少平移不变性而产生的伪吉布斯效应,使用剪切替代平移技术来提取图像中原有的几何特征,将递归Cycle Spinning方法运用在剪切技术中给出剪切不变思想,并将其用于Contourlet域图像去噪。对于被加性高斯白噪声污染的图像,实验中将RSICT方法与平移不变小波、平移不变Contourlet等方法进行了比较,结果表明在大多数情况下,RSICT的PSNR结果相比这些方法高出0.1至1.2dB,并保持良好的视觉效果。 Based on Shear and Recursive Cycle Spinning,a novel contourlet transform denoising scheme was proposed. To avoid the Gibbs-like phenomena caused by transform variance of the contourlet transform, translation method was replaced by shear technique and employed to capture the geometric structure hidden in images, applied Reeursive Cycle Spinning to Shear produced Shear Invariant method, and developed Recursive Shear Invariant Contourlet Transform denoising scheme (RSICT). This scheme achieves enhanced estimation results for images that are corrupted with additive Gaussian noise over a wide range of noise variance. To evaluate the performance of the proposed algorithms, experiment results were compared with those of the algorithms, such as translation invariant wavelets and translation invariant contourlet method. The simulation results indicate that the proposed method outperforms the others 0. 1 - 1. 2 dB in PSNR,and keeps better visual result as well.
作者 贾建 项海林
出处 《计算机科学》 CSCD 北大核心 2009年第5期254-256,F0003,共4页 Computer Science
基金 国家自然科学基金(60703117) 国家自然科学基金项目(60703109)资助
关键词 平移不变 剪切不变 CONTOURLET变换 递归Cycle SPINNING Shear invariant, Translation invariant, Contourlet transform, Recursive cycle spinning
  • 相关文献

参考文献12

  • 1汪西莉,焦李成.基于对偶树复小波和MRF模型的纹理图像分割[J].计算机科学,2007,34(1):187-190. 被引量:4
  • 2Starck J L,Candès E J,Donoho D L.The curvelet transform for image denoising[J].IEEE trans.Image Processing,2002,11(6):670-684
  • 3Do M N,Vetterli M.The contourlet transform,an efficient directional muttiresolution image representation[J].IEEE Trans.on Image Processing.2005,14(12):2091-2106
  • 4Eslami R,Radha H.The contourlet transform for image denoising using cycle spinning[C]//Signals,Systems,and Computers,2003.Conference Record of the Thirty-Seventh Asilomar Conference on.New York:IEEE,2003:1982-1986
  • 5Eslami R,Radha H.Image denoising using translation invariant contourlet transform[C] /// Acoustics,Speech,and Signal Processing,Proceedings.(ICASSP'05).IEEE International Conference on,2005,4:557-560
  • 6贾建,焦李成.数字脊波变换的实现与一种改进方法[J].计算机研究与发展,2006,43(1):115-119. 被引量:9
  • 7Coifman R R,Donoho D L.Translation invariant denoising[C] //A.Antoniadis and G.Oppenheim,eds.Wavelets and Statistics,Springer Lecture Notes in Statistics,103.Berlin,SpringerVerlag,1995:125-150
  • 8Fletcher A K,Ramchandran K,Goyal V K.Iterative projective wavelet methods for denoising[C]//Unser M A,Aldroubi A,Laine A F,eds.Proc.Wavelets:Appl in Sig.& Image Proc X.San Diego:SPIE,2003,5207:9-15
  • 9Donoho DL.Wavelab850[CP/OL].http://www-stat.stanford.edu/-wavelab/Wavelab_850
  • 10Do M N.Contourlet Toolbox[CP/OL].http://www.ifp.uiuc.edu/minhdo/software/

二级参考文献14

  • 1E.J.Candès.Ridgelets:Estimating with ridge functions.Department of Statistics,Stanford University,Tech.Rep.:1999-27,1998.
  • 2D.L.Donoho,M.R.Duncan.Digital curvelet transform:Strategy,implementation and experiments.Department of Statistics,Stanford University,Tech.Rep.:2000-12,2000.
  • 3D.L.Donoho.Orthonormal ridgelets and linear singularities.Department of Statistics,Stanford University,Tech.Rep.:1998-19,1998.
  • 4Minh N.Do,Martin Vetterli.The finite ridgelet transform for image representation.IEEE Trans.Image Processing,2003,12(1):16~28.
  • 5J.L.Starck,E.J.Candès,D.L.Donoho.The curvelet transform for image denoising.IEEE Trans.Image Processing,2002,11(6):670~684.
  • 6E.J.Candès.Harmonic analysis of neural networks.Appl Comput Harmon Anal,1999,6(2):197~218.
  • 7E.J.Candès.Ridgelets:Theory and applications:[ Ph.D.dissertation ].Stanford:Department of Statistics,Stanford University,1998.
  • 8Tang Rongxi,Wang Jiaye,Peng Qunsheng,et al.Computer Graphics.Beijing:Science Press,2001.
  • 9Georgeson M A.Spatial fourier analysis and human vision.Chapter 2,in Tutorial Essays in Psychology,A Guide to Recent Advances.N.S.Sutherland ed.Lawrence Earlbaum Associates,Hillsdale,N.J.1979,2
  • 10Portilla J,Simoncelli E P.A parametric texture model based on joint statistics of complex wavelet coefficients.Intemational Journal of Computer Vision,2000,40(1):49~71

共引文献11

同被引文献26

  • 1梁栋,沈敏,高清维,鲍文霞,屈磊.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046. 被引量:38
  • 2Tang Yuanyan, Yang Lihua, Liu J iming. Wavelet Theory and its Application to Pattern Reeognition[M]. Singapore: The World Seientifie Publishing Co. Pte, Ltd, 2000.
  • 3Donoho D L. Denoising by softthresholding[J]. IEEE Trans. on Inform. Theory, 1995,41 (3) : 613-627.
  • 4Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Trans. on Image Processing, 2000,9(9) : 1532-1546.
  • 5Crouse M S,Nowak R D,Baraniuk R G. Wavelet-based statistical signal processing using Hidden Markov models[J]. IEEE Trans. on Signal Processing,1998,46(4):886-902.
  • 6Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixture of Gaussians in the wavelet domain[J]. IEEE Trans. on Image Processing,2003,12(11) : 1338-1351.
  • 7Sendur L,Selesniek I W. Bivariate shrinkage with local variance estimation[ J]. IEEE Signal Processing Letters, 2002, 9 (12) 438-441.
  • 8Kingsbury N G. The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters[C]// Proceedings of 8th IEEE Digital Signal Processing Workshop. Bryce Canyon, USA, 19 9 8 : 8 6-8 9.
  • 9Selesnick I W. The Double-density Dual-tree DWT[J]. IEEE Transactions on Signal Processing, 2004,52 (5) : 1304-1314.
  • 10Selesniek I W. 2 D Double-density Complex Wavelet Transform [J/OL]. http://taeo, poly. edu/selesi/DoubleSoftware/index. html.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部