期刊文献+

天然沸石生物再生途径机理研究 被引量:15

The mechanism of bio-regeneration process of natural zeolite
下载PDF
导出
摘要 在模拟沸石床系统中,对比探讨了曝气、异养菌和硝化细菌3个因素单独或共同作用对沸石再生效果的影响.结果表明,在本试验条件下,曝气作用、异养菌代谢和硝化作用分别可将沸石的再生效率提高0.5%-1.0%、20.9%-31.1%和120%-180%,3个因素影响大小依次为硝化细菌〉异养菌〉曝气吹脱.当异养菌与硝化细菌共存时具有协同再生作用,不仅可提高系统的再生效率(接近100%),而且还可提高沸石的再生率(约10%).离子交换、曝气和异养菌单独或共同作用下沸石的再生过程可用y=1-e^-kx方程模拟;存在硝化细菌作用时沸石的再生过程前、后段分别用线性方程y=kx和Monod方程拟合(R2〉0.99).结合沸石再生前后表观形态变化的观测,探讨了沸石的再生机理. Pilot-scale zeolite bed was constructed to discuss the influence upon the regeneration efficiency of zeolite by aeration, heterotrophic bacteria and nitrifying bacteria. The regeneration efficiency of zeolite was enhanced by 0.5%--1.0%, 20.9%-31.1% and 120%-180% with the present of aeration, heterotrophic bacteria and nitrifying bacteria, respectively. Nitrifying bacteria played a major role in the regeneration process of ammonia-saturated zeolite, followed by heterotrophic bacteria and aeration. When heterotrophic bacteria and nitrifying bacteria coexisted in a reactor, a synergistic effect bad been observed, which could not only improve the regeneration efficiency up to 100%, but also increase the regeneration rate about 10%. The influence of ion-exchange, aeration and heterotrophic bacteria alone or in combination on the regeneration efficiency of zeolite fitted the first order kinetic reaction. And the curves of regeneration efficiency with nitrifying bacteria was described by y=kx and the Monod equation(R^2〉0.99). Through investigation on the change of SEM on zeolite surface before and after zeolite biological regeneration, the mechanism of bio-regeneration process of ammonia-saturated zeolite was revealed.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2009年第5期506-511,共6页 China Environmental Science
基金 上海市科委国际科技合作项目(2008DFA91000) 上海市科委中法国际合作项目(062307038)
关键词 人工湿地 沸石再生 曝气 异养菌 硝化细菌 constructed wetland clinoptilolite regeneration aeration heterotrophic bacteria nitrifying bacteria
  • 相关文献

参考文献17

  • 1Vumazal J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic:10 years experience [J]. Ecological Engineering, 2002,18:633-646.
  • 2Billore S K, Singh N, Ram H K, et al. Treatment of a molasses based distillery effluent in a constructed wetland in central India [J]. Water Science and Technology, 2001,44( 11/12):441-448.
  • 3De Maeseneer J L. Constructed wetlands for sludge dewatering [J]. Water Science and Technology, 1997,35(5):279-285.
  • 4Lahav O, Green M. Ammonium removal from primary and secondary effluents using a bioregenerated ion-exchange process [J]. Water Science and Technology, 2000,42(1/2): 179-185.
  • 5Bookey N A, Cooney E L, Priestley A J. Ammonia removal from sewage using natural Australian zeolite [J]. Water Science and Technology, 1997,34(9):17-24.
  • 6Koon J H. Optimization of ammonia removal by ion exchange using clinoptilite [M]. California: Environment Protection Agency, University of California, Berkerly. 1971.
  • 7Tsitsishvili G V, Andronikash Dimova G. Natural zeolites [M]. Chiehester, England: Ellis Horwood Limited, 1992:86-91.
  • 8Lahav O, Green M. Ammonium removal from primary and secondary effluents using a bioregenemted Ion-exchange process [J]. Water Science and Technology, 2000,42(1 ): 179-185.
  • 9国家环境保护局水和废水监测编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,1998
  • 10Shannas N K. Interactions of temperature, pH and biomass on the nitrification process [J]. Journal of Water Pollution Control Federation, 1986,58(1):52-59.

二级参考文献19

  • 1RANDALL C W,BUTH D.Nitrite build-up in active sludge resulting from temperature effects[J].Journal of Water Pollution Control Federation,1984,56(9):1039-1044.
  • 2ARMSTRONG W,ARMSTRONG J,BECKETT P M.Measurement and modeling of oxygen release from roots of Phragmites australis[C]//COOPER P F,FINDLATER B C.The use of constructed wetlands in water pollution control.Oxford:Pergamon,1990:41 -51.
  • 3SORRELL B K,ARMSTRONG W.On the difficulties of measuring oxygen release by root systems of wetland plants[J].Journal of Ecology,1994,82:177-183.
  • 4JESPERSEN D N,SORRELL B K,BRIX H.Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis[J].Aquatic Botany,1998,61:165-180.
  • 5SHANNAS N K.Interactions of temperature,pH and biomass on the nitrification process[J].Journal of Water Pollution Control Federation,1986,58(1):52 -59.
  • 6MCGILLOWAY R L,WEAVER R W,MING D W,et al.Nitrification in a zeoponic substrate[J].Plant and Soil,2003,256:371-378.
  • 7KOON J H.Optimization of ammonia removal by ion exchange using clinoptilite[M].California:Environment Protection Agency,University of California,Berkerly.1971.
  • 8MURPHY E B,ARYCYK O,GLEASON W T.Natural zeolites:novel uses and regeneration in waste water treatment[C]//SAND L B,MUMPTON F A.Natural Zeolites,Occurrence,Properties,Use.New York:Pergamon press,1978:471-478.
  • 9TSUNO HIROSHI,NISHIMURA FUMITAKE,SOMIYA ISAO.Removal of ammonia nitrogen in bio-zeolite reactor[J].Doboku Gakkai Bombun Hokokushu,1994,503:159-166.
  • 10GREENMICHAL,MELS ADRIAAN,LAHAV ORI,et al.Biological-ion exchange process for ammonium removal from secondary effluent[J].Water Science and Technology,1996,34(1/2):449-458.

共引文献35

同被引文献307

引证文献15

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部