期刊文献+

Mesoscale Predictability of Mei-yu Heavy Rainfall 被引量:10

Mesoscale Predictability of Mei-yu Heavy Rainfall
下载PDF
导出
摘要 Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on not only moist convection but also the flow regime. In this study, the mesoscale predictability and error growth of mei-yu heavy rainfall is investigated by simulating a particular precipitation event along the mei-yu front on 4- 6 July 2003 in eastern China. Due to the multi-scale character of the mei-yu front and scale interactions, the error growth of mei-yu heavy rainfall forecasts is markedly different from that in middle-latitude moist baroclinic systems. The optimal growth of the errors has a relatively wide spectrum, though it gradually migrates with time from small scale to mesoscale. During the whole period of this heavy rainfall event, the error growth has three different stages, which similar to the evolution of 6-hour accumulated precipitation. Multi-step error growth manifests as an increase of the amplitude of errors, the horizontal scale of the errors, or both. The vertical profile of forecast errors in the developing convective instability and the moist physics convective system indicates two peaks, which correspond with inside the mei-yu front, and related to moist The error growth for the mei-yu heavy rainfall is concentrated convective instability and scale interaction. Recently reported results indicate that small amplitude and small scale initial errors grow rapidly and subsequently contaminate short-term deterministic mesoscale forecasts. This rapid error growth is dependent on not only moist convection but also the flow regime. In this study, the mesoscale predictability and error growth of mei-yu heavy rainfall is investigated by simulating a particular precipitation event along the mei-yu front on 4- 6 July 2003 in eastern China. Due to the multi-scale character of the mei-yu front and scale interactions, the error growth of mei-yu heavy rainfall forecasts is markedly different from that in middle-latitude moist baroclinic systems. The optimal growth of the errors has a relatively wide spectrum, though it gradually migrates with time from small scale to mesoscale. During the whole period of this heavy rainfall event, the error growth has three different stages, which similar to the evolution of 6-hour accumulated precipitation. Multi-step error growth manifests as an increase of the amplitude of errors, the horizontal scale of the errors, or both. The vertical profile of forecast errors in the developing convective instability and the moist physics convective system indicates two peaks, which correspond with inside the mei-yu front, and related to moist The error growth for the mei-yu heavy rainfall is concentrated convective instability and scale interaction.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第3期438-450,共13页 大气科学进展(英文版)
基金 supported by the National Key Scientific and Technological Project 2006BAC02B03,2004CB418300 under the FANEDD 200325 The Specialized Research Fund for the Doctoral Program of Higher Education (20080284019) National Natural Science Foundation of China under Grant No.40325014
关键词 mesoscale predictability error growth scale interaction mei-yu front precipitation mesoscale predictability, error growth, scale interaction, mei-yu front precipitation
  • 相关文献

二级参考文献20

  • 1孙淑清,田生春,杜长萱.中尺度低涡发展时高层流场特征及能量学研究[J].大气科学,1993,17(2):137-147. 被引量:14
  • 2廖捷,谈哲敏.一次梅雨锋特大暴雨过程的数值模拟研究:不同尺度天气系统的影响作用[J].气象学报,2005,63(5):771-789. 被引量:66
  • 3胡伯威,潘鄂芬.梅雨期长江流域两类气旋性扰动和暴雨[J].应用气象学报,1996,7(2):138-144. 被引量:53
  • 4高守亭 孙淑清.次天气尺度低空急流的形成[J].大气科学,1984,8(2):179-188.
  • 5Trier S B, Davis C A, Tuttle J D. Long-lived mesoconvective vortices and their environment. Part Ⅰ: Observations from the central United States during the 1998 warm season. Mon Wea Rev, 2000, 128:3376 - 3395
  • 6Ninomiya K, Akiyama T. Band structure of mesoscale clusters associated with low-level jet stream. J Meteor Soc Japan, 1974,52:300 - 313
  • 7Chou L C, Chang C P, Williams R T. A numerical simulation of the meiyu front and the associated low level jet. Mon Wea Rev,1990, 118:1408 - 1428
  • 8Chen C, Tao W K, Lin P L, et al. The intensification of the low-level jet during the development of mesoscale convective system on a meiyu front, Mon Wea Rev, 1998,126:349 -371
  • 9Zhang Q H, Lau Kai-Hon, Kuo Ying-Hwa, et al. A numerical study of a mesoscale convective system over the Taiwan strait.Mon Wea Rev, 2003, 131:1150 - 1170
  • 10谈哲敏 王元 王春明 见:伍荣生 高守亭 谈哲敏著.非守恒过程对于锋面的影响(第三章)[A].见:伍荣生,高守亭,谈哲敏著.锋面过程与中尺度扰动[C].北京:气象出版社,2004.168pp.

共引文献71

同被引文献118

引证文献10

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部