期刊文献+

PCA和PLS应用于胃癌亚型分类研究 被引量:3

PCA AND PLS FOR GASTRIC CANCER SUBTYPE CLASSIFICATION
原文传递
导出
摘要 文章研究了基于微阵列基因表达数据的胃癌亚型分类。微阵列基因表达数据样本少、纬度高、噪声大的特点,使得数据降维成为分类成功的关键。作者将主成分分析(PCA)和偏最小二乘(PLS)两种降维方法应用于胃癌亚型分类研究,以支持向量机(SVM)、K-近邻法(KNN)为分类器对两套胃癌数据进行亚型分类。分类效果相比传统的医理诊断略高,最高准确率可达100%。研究结果表明,主成分分析和偏最小二乘方法能够有效地提取分类特征信息,并能在保持较高的分类准确率的前提下大幅度地降低基因表达数据的维数。 The gastric cancer is one of the most common malignant tumors in the world. There is no uniform method to classify gastric cancer in medicine until now. Gastric cancer may be the intestinal gastric cancer or diffused gastric cancer based on Lauren. It is important to know the subtype of gastric cancer so that to decide how to treat. Using gene expression data to research cancer is one of the hot research subjects at present, and will have strong impact on gastric cancer treatment and diagnosis. The gene expression profiling, generally has small samples and high dimensions because of the expensive experiments and other reasons. Therefore the traditional methods for classification are always failing. We should cut down dimensions of the data before classification. In this paper, the authors applied the partial least squares (PLS) and the principal component analysis (PCA) to the classification of gastric cancer. Two different data sets of gastric cancer had been used. And the results of classification using these two methods were compared with SVM and KNN. The results of the experiments showed that PLS and PCA were both good as the method for dimension reduction. And the result of classification was also good. The merits and the demerits of the two methods were also expounded in the paper.
出处 《生物物理学报》 CAS CSCD 北大核心 2009年第2期141-147,共7页 Acta Biophysica Sinica
基金 国家自然科学基金项目(60234020)~~
关键词 主成分分析 偏最小二乘 分类 胃癌 微阵列基因表达数据 Principle component analysis Partial least squares Classification Gastric cancer Gene expression profiling
  • 相关文献

参考文献11

  • 1Parkin DM. Global cancer statistics in the year 2000. Lancet Oncology, 2001,2(9):533-543
  • 2Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal type. Acta Pathol Microbiol Scand, 1965,64:31-49
  • 3Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Lob ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999,286(10):531-537
  • 4Bicciato S, Luchini A, Di Bello D. PCA disjoint models for multiclass cancer analysis using gene expression data. Bioinformatics, 2003,19(5):571-578
  • 5Vapnik VN. The nature of statistical learning theory. Second Edition. Berlin: Spring-Verlag, 1995
  • 6Cover T, Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 1967,13(1):21-27
  • 7Hippo Y, Taniguchi H, Tsutsumi S, Machida N, Chong JM, Fukayama M, Kodama T, Aburatani H. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Research, 2002,62(1):233-240
  • 8Boussioutas A, Li H, Liu J, Waring P, Lade S, Holloway A J, Taupin D, Gorringe K, Haviv I, Desroond PV, Bowtell DDL. Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Research, 2003, 63(10):2569-2577
  • 9李晶皎,王爱侠,张广渊.模式识别.第三版.北京:电子工业出版社,2006.138-253
  • 10吴涛.核函数的性质方法及其在障碍检测中的应用.博士论文.西安交通大学.2002

同被引文献27

  • 1韩企夏.早期发现是治愈乳腺癌的关键[J].抗癌,2001(3):29-29. 被引量:1
  • 2刘平年.PLS法和PCA法在近红外光谱定量分析中的应用研究[J].广州食品工业科技,2004,20(4):106-107. 被引量:5
  • 3于春梅,杨胜波,陈馨,张洪才.SVM和基于PCA、PLS的SVM在非线性辨识中的比较研究[J].计算机应用研究,2007,24(6):85-86. 被引量:11
  • 4Duda RO,Hart PE,Stork DG.Pattern Classification[M].NewYork:John Wiley & Sons,2001.
  • 5Li B,Zheng CH,Huang DS,et ai.Gene expression dataclassification using locally linear discriminant embedding[J].Computers in Biology and Medicine,2010,40:802-810.
  • 6Ridder DD,Kouropteva 0,Okun 0,et al.Supervised locallylinear embedding[C].Lecture Notes in Computer Science,2003,34(10):333-341.
  • 7Xuehua Li,Lan Shu.Kernel based nonlinear dimensionalityreduction for microarray gene expression data analysis[J].ExpertSystems with Applications,2009,36:7644-7650.
  • 8Cai Ruichu,Hao Zhifeng,Wen Wen,et al.Kernel based geneexpression pattern discovery and its application on cancerclassification[J].Neurocomputing,2010,73:2562-2570.
  • 9Turk M,Pentland A.Face recognition using eigenfaces[C]//Proc of the IEEE computer society conference on computer visionand pattern recognition.Maui:IEEE,1991:586-591.
  • 10Martinez AM1Kak AC.PCA versus LDA[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2001,23(2):228-233.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部