期刊文献+

基于K-L变换的BP神经网络遥感图像分类 被引量:16

BP neural network based on principle component analysis in multi-spectral remote sensing images classification
原文传递
导出
摘要 为了提高多光谱遥感图像的分类正确,提出了一种基于主成分分析(K-L变换)的分类方法。该方法先应用K-L变换对多波段遥感图像进行降维,提取最主要的三个成分合成假彩色图,然后利用BP神经网络对假彩色图进行监督分类。由于主成分之间是不相关的,增强了图象信息,降低了神经网络的计算量,提高了分类精度。实验结果证明,该算法分类精度优于传统分类方法,总正确率为88.5%,Kappa系数为0.862,因而具有实用价值。 In order to improve the classification accuracy of multi-spectral remote sensing image, this paper puts forward a new classification method based on principal component analysis. The method is consisted of two steps: reducing the dimensions of multispectral remote sensing image with principle component analysis and generating a new image by the three main components of the remote sensing image; performing supervised classification on the new image with BP neural network. The result indicates that this method is superior to traditional algorithms, and its overall accuracy and Kappa coefficient reach 88.5% and 0. 862.
出处 《测绘科学》 CSCD 北大核心 2009年第3期137-139,共3页 Science of Surveying and Mapping
关键词 K—L变换 BP神经网络 遥感图像 监督分类 principle component analysis BP neural network remote sensing images supervised classification
  • 相关文献

参考文献6

二级参考文献28

  • 1闵惜琳,刘国华.用MATLAB神经网络工具箱开发BP网络应用[J].计算机应用,2001,21(z1):163-164. 被引量:71
  • 2潘东晓,虞勤国,赵元洪.遥感图像的神经网络分类法[J].国土资源遥感,1996,8(3):49-55. 被引量:23
  • 3郭晶 杨章玉.MATLAB 6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.313-319.
  • 4楼顺天 施阳.基于Matlab的系统分析与设计—模糊系统[M].西安:西安电子科技大学出版社,1999..
  • 5Nussbaum M A. Fundamentals of Artificial Neural Networks. Journal of Biomechanics, 1994, 29 (10).
  • 6Werbos P J. Backpropagation Past and Future [C].ICNN,1988.343-353.
  • 7杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社,2002..
  • 8Stanic S,Goodman R R,Briggs K B,et al.ShallowWater Bottom Reverberation Measurements[J].IEEE Journal of Oceanic Engineering,1998,23 (3):203-210.
  • 9Michalopoulou Z,Alexandrou D,Moustier C.Application of Neural and Statistical Classifiers to the Problem of Seafloor Characterization[J].IEEE Journal of Oceanic Engineering,1995,20(3):190-197.
  • 10Stewart W K,Chu D,Malik S,et al.Quantitative Seafloor Characterization Using a Bathymetric Sidescan sonar[J].IEEE Journal of Oceanic Engineering,1994,19(4):599-610.

共引文献99

同被引文献165

引证文献16

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部