期刊文献+

利用互带能量和小波变换进行图像融合 被引量:1

Image fusion based on energy of cross band and wavelet transform
下载PDF
导出
摘要 图像融合规则对融合的质量起着主要的作用,但目前大部分基于小波变换的融合规则中,都是在输入图像的单一分解层上独立进行的。提出了一种基于互带能量和小波变换的图像融合方法。该方法在融合输入图像的细节信息时,同时考虑了输入图像的多个分解层的小波系数。实验结果表明,无论是依据均方根误差、信噪比、灰度平均误差等客观评价标准,还是视觉的主观评价,所提出的融合方法都能取得较好的性能。 Image fusion rule is the key that influences the quality of image fusion.At present,most of the rules which based on wavelet transform operate independently upon the single decomposition level of input images.This paper proposes a fusion rule based on the energy of cross band and wavelet transform.The method takes a number of decomposition levels' wavelet coefficients into account in the detail information fusion.The experimental results show that the proposed method can obtain good performance in terms of both objective evaluation criteria such as root-mean-square error,signal-to-noise ratio,mean error and visual subjective evaluation criteria.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第14期164-166,共3页 Computer Engineering and Applications
关键词 图像融合 互带能量 小波变换 主成分分析 image fusion energy of cross band wavelet transform Principle Component Analysis(PCA)
  • 相关文献

参考文献9

  • 1Zheng You-zhi,Hou Xiao-dong,Bian Tian-tian,et al.Effective image fusion rules of muhi-scale image decomposition[C]//Image and Signal Processing and Analysis,Sept 2007:362-366.
  • 2Mallat S G.A theory for muhiresolution signal decomposition:The wavelet representation[J].IEEE Trans on Pattern Anal Mach Intell, 1989,11(3):674-693.
  • 3Chen Huai-xin.A muhiresolution image fusion based on principle component analysis[C]//Fourth International Conference on Image and Graphics,Aug 2007:737-741.
  • 4Petrovic' V,Xydeas C.Muhiresolution image fusion using cross band feature selection[C]//Proc SPIE, 1999,3719 : 319-326.
  • 5Jian Mu-wei,Dong Jun-yu,Zhang Yang.Image fusion based on wavelet transform[C]//Eighth ACIS International Conference on SNPD,July 30 2007-Aug 1 2007,1:713-718.
  • 6Li Mao-kuan,Guan Jian.Pixel level image fusion based on ICA and wavelet transform[Cy/lst Asian and Pacific Conference on SAR, Nov 2007:229-231.
  • 7Lu Ying-hua,Feng Xue.A multi-focus image fusion based on wavelet and region detection[C]//EUROCON,The International Conference on Computer as a Tool,Sept 2007:294-295.
  • 8狄红卫,韩耀东,陈木生.一种自适应的多聚焦图像融合方法[J].中国图象图形学报,2006,11(3):353-356. 被引量:13
  • 9王卫卫,水鹏朗,宋国乡.小波域多聚焦图像融合算法[J].系统工程与电子技术,2004,26(5):668-671. 被引量:26

二级参考文献10

  • 1Toet A. Hierarchical Image Fusion[J]. Machine Vision and Applications,1990,3(1):1-11.
  • 2Toet A. Multiscale Contrast Enhancement with Application to Image Fusion[J]. Optical Engineering, 1992, 31(5):1026-1031.
  • 3Toet A, Van Ruyven L J, Valeton J M. Merging Thermal and Visual Images by a Contrast Pyramid[J] Optical Engineering,1989,28(7):789-792.
  • 4Toet A. Image Fusion by a Ratio of Low-Pass Pyramid[J]. Pattem Recognition Letters, 1989,9(4):245-253.
  • 5Daubechies I. Ten Lectures on Wavelets[A]. CBMS Conference Series in Applied Mathematics[C]. SLAM, Philadelphia, 1992.
  • 6ZHANG Zhong,Blum R S.A categorization of multiscale decomposition based image fusion schemes with a performance study for a digital camera application[J].Proceedings of IEEE,1999,87(8):315 ~ 1326.
  • 7崔岩梅,倪国强,王毅,钮永胜,李熙莹,蒲恬.一种基于小波变换的多尺度多算子图像融合方法[J].光学技术,1999,25(4):37-39. 被引量:23
  • 8李树涛,王耀南,龚理专.多聚焦图像融合中最佳小波分解层数的选取[J].系统工程与电子技术,2002,24(6):45-48. 被引量:30
  • 9毛士艺,赵巍.多传感器图像融合技术综述[J].北京航空航天大学学报,2002,28(5):512-518. 被引量:103
  • 10李晓春,陈鲸.一种基于小波变换的图像融合新方法[J].空军工程大学学报(自然科学版),2003,4(2):55-58. 被引量:6

共引文献37

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部