期刊文献+

基于数据融合的协作频谱感知算法 被引量:14

Cooperative Spectrum Sensing Algorithm Based on Data Fusion
下载PDF
导出
摘要 协作的频谱感知使认知无线电(CR)网络对主用户进行可靠的检测,并避免了对主用户通信的干扰。数据融合是协作的频谱感知的关键技术。对基于"与"准则、"或"准则、最大后验概率准则和贝叶斯准则的数据融合算法进行了研究,采用这4种融合方法在认知无线电网络中进行协作频谱感知,并比较了它们的频谱检测性能。仿真结果显示最大后验概率准则和贝叶斯准则在认知无线电的环境中有优越的感知性能。 Cooperative spectrum sensing enables a Cognitive Radio (CR) networks to reliably detect primary users and avoid causing interference to primary user's communications. The data fusion technique is a key component of cooperative spectrum sensing. Four data fusion methods have been investigated in this paper,including "AND" rule, "OR" rule, the largest posterior probability? rule and Bayesian rule. We use them to sense spectrum cooperatively in CR networks and their spectrum detection performances were compared. Simulation results show that the largest posterior probability? rule and Bayesian rule can approach ascendant sensing performances in the CR networks.
作者 卞荔 朱琦
出处 《南京邮电大学学报(自然科学版)》 2009年第2期73-78,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)(2007CB310607) 国家自然科学基金(60772062) 东南大学移动通信国家重点实验室开放研究基金(N200813)资助项目
关键词 认知无线电网络 协作频谱感知 数据融合 贝叶斯准则 cognitive radio networks cooperative spectrum sensing data fusion Bayesian rule
  • 相关文献

参考文献10

  • 1Federal Communication Commission. Spectrum Policy Task Force [ R]. Report of the Spectrum Efficiency Working Group,2002.
  • 2Federal Communication Commission. Unlicensed operation in the TV broadcast bands and additional spectrum for unlicensed devices below 900 MHz in the 3 GHz band[ Z]. ET Docket No. 04-186, May 2004.
  • 3LUNDEN J, KOIVUNEN V, HUTFUNEN A, et al. Censoring for Collaborative Spectrum sensing in Cognitive Radios [ C ] ,//Conference Record of the Forty-First Asilomar Conference on Signal Systems and Computers( ACSSC ' 2007 ). Piscataway : IEEE ,2007:772 - 776.
  • 4SAI S N,CORDERIRO C,CHALLAPALI K. Spectrum agile radios:utilization and sensing architectures[ C ] // Proc IEEE DySPAN. Piscataway: IEEE ,2005 : 160 - 169.
  • 5VISOTSKY E, KUFFNER S, PETERSON R. On collaborative detection of TV transmissions in support of dynamic spectrum sharing [ C ]//Proc IEEE DySPAN. Piscataway: IEEE,2005:338 - 345.
  • 6SONNENSCHEIN A, FISHMAN P M. Radiometric detection of spread-spectrum signals in noise of uncertain power [J]. IEEE Trans on Aerospace and Electronic System, 1992,28 ( 3 ) : 654 - 660.
  • 7URKOWITZ H. Energy detection of unknown deterministic signals [J]. Proceeding of the IEEE,1967,55(4) :523 -531.
  • 8GENDENKO B V, KOLMOGOROV A N. Limit Distributions for Sums of Independent Random Variables[ M]. Upper Saddle River: Addison-Wesley, 1954.
  • 9KATTEPUR A K, HOANG A T, LIANG Yingchang, et al. Data and Decision Fusion for Distributed Spectrum Sensing in Cognitive Radio Networks [ C ]//Processing of 2007 6th International Conference on Information Communications & Signal. Piscataway:IEEE,2007: 1-5.
  • 10CHEN Ruiliang, PARK J M, BIAN Kaigui. Robust Distributed Spectrum Sensing in Cognitive Radio Networks [ C ] //The 27th Conference on Computer Communications. Piscataway: IEEE ,2008 : 1876 - 1884.

同被引文献140

引证文献14

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部