期刊文献+

基于小波有限元对注塑型腔内熔体的三维流动分析 被引量:1

Analysis of the Three-dimensional Melting Flow in Injection Cavity Based on the Wavelet Finite Element
下载PDF
导出
摘要 分析了不可压缩、非等温、黏性非牛顿流体在型腔内的流动特点,应用小波有限元法准确地模拟出熔体型腔内充模流动模型,克服了传统有限元在工程奇异性问题求解中的不足。算例表明,数值计算结果与实验结果比较一致,该方法成功地模拟了注塑成形型腔内流体的流动过程的重要特征。 The flowing characteristics of incompressible non-isothermal viscous non--Newtonian fluids in mold cavity was analysed. The model of the mold cavity was accurately simulated with the application of wavelet finite element method, this method overcome the deficiency in engineering singularity of the traditional finite element method. The numerical calculation result is in concordance with experiment,and this method successfully simulates the important features of the flowing process in mold cavity.
机构地区 江苏大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第10期1244-1247,共4页 China Mechanical Engineering
关键词 流动模型 小波有限元 奇异性 数值计算 flowing model wavelet finite element method singularity numerical calculation
  • 相关文献

参考文献4

二级参考文献42

  • 1曹伟,王蕊,申长雨.塑料熔体在注塑模中的三维流动模拟[J].化工学报,2004,55(9):1493-1498. 被引量:11
  • 2Syrjala S. Further Finite Element Analyses of Fully Developed Laminar Flow of Power-law Non-newtonian Fluid in Rectangular Ducts: Heat Transfer Predictions. International Journal of Heat and Mass Transfer, 1996, 23(6): 799~807
  • 3Lin Y M,Wu G H, Ju S H. Non-isothermal Flow of a Polymeric Liquid Passing an Asymmetrically Confined Cylinder. International Journal of Heat and Mass Transfer, 2004, 47: 1989~1996
  • 4Mercado E R L, Souza V C, Guirardello R, et al. Modellign Flow and Heat Transfer in Tubes Using a Fast CFD Formulation. Computers and Chemical Engineering, 2001, 25: 713~722
  • 5Kammisli F. Flow Analysis of a Power-law Fluid Confined in an Extrusion Die. International Journal of Engineering Science, 2003, 41: 1059~1083
  • 6Minev P D, Chen T, Nandakumar K. A Finite Element Technique for Multifluid Incompressible Flow Using Eulerian Grids. Journal of Computational Physics, 2003, 187: 255~273
  • 7Huang H Ch, Li Zh H, Usmani A S.Finite Element Analysis of Non-Newtonian Flow. Berlin: Springer,1998
  • 8Brooks A N, Hughes T J. Streamline Upwind/Petrov-Galerkin Formulations for Convective Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations. Computer Methods in Applied Mechanics and Engineering, 1982, 32: 199~259
  • 9HIEBER C A,SHEN S F.A Finite-element/finite difference simulation of the injection molding filling process[J].J Non-Newt Fluid Mech,1980,7:1-32.
  • 10PICHELIN E,COUPEZ T.Finite element solution of the 3D filling problem for viscous incompressible fluid[J].Computer Methods Applied Mechanic Engineer,1998,163:359-371.

共引文献27

同被引文献11

  • 1向家伟,陈雪峰,董洪波,何正嘉.薄板弯曲和振动分析的区间B样条小波有限法[J].工程力学,2007,24(2):56-61. 被引量:8
  • 2Diaz L A, Martin M T, Vampa V. Daubechies wavelet beam and plate finite elements[J]. Finite Elements in Analysis and Design ,2009,45(3) 200-209.
  • 3Zupan E,Zupan D, Sale M. The wavelet-based theory of spatial naturally curved and twisted linear beams [J]. Computational Mechanics ,2009,43(5) :675-686.
  • 4Chen X F, Xiang J W, Li B, et al. A study of multi- scale wavelet-based elements for adaptive finite element analysis[J]. Advances in Engineering Soft- ware ,2010,41 (2) : 196-205.
  • 5Vasilyev O V. Solving multi-dimensional evolution problems with localized structure using second gener- ation wavelets[J]. Int. J. Comp. Fluid Dyn. , 2003, 17(2) : 151-168.
  • 6Castrill6n-Candds J, Amaraunga K. Spatialiy adapted multiwavelets and sparse representation of integral equations on general geometries[J]. SIAM J. Sci. Comput. ,2003,24(5) : 1530-1566.
  • 7D'Heedene S, Amaratunga K, Castrill6n-Candds J. Generalized hierarchical bases: a wavelet-ritz- galerkin framework for Lagrangian FEM[J]. Eng. Comput. , 2005,22(1) : 15-37.
  • 8He Y M,Chen X F,Xiang J W,et al. Adaptive multi- resolution finite element method based on second gen- eration wavelets[J]. Finite Elem. Anal. Des. , 2007, 43:566-579,.
  • 9Wang Y M,Chen X F,He Y M,et al. New decoupled wavelet bases for multiresolution structural analysis I-J]. Structural Engineering and Mechanics, 2010, 35(2) : 195-207.
  • 10Bathe K J. Finite Element Procedures[M]. Prentice- Hall: Upper Saddle River, NJ, 1996.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部