期刊文献+

轮胎非线性自激振动的动力学稳定性分析 被引量:8

Dynamics Stability Analysis of Tire's Non-linear Self-excited Vibration
下载PDF
导出
摘要 考虑轮胎接地摩擦的非线性特性,建立胎面-地面系统的考虑时间延迟的动力学振动模型,以常微分方程稳定性理论和非线性动力学理论为基础,阐明了轮胎的自激振动是一种非线性动力学Hopf分岔后出现的稳定极限环振动现象。通过MATLAB/Simulink进行仿真试验,证明了自激振动现象的存在,并且系统在临界车速发生了Hopf分岔,与实际情况一致。 Polygonal wear of tire is one of the most pressing problems to be solved in the process of a vehicle's research and design. Considering the nonlinear characteristics of tire's grounding friction, a dynamics vibration model of tread--pavement system, taking time--delay into account, was estab- lished. The self--excited vibration of tire is proved to be a kind of non linear,stable,limit cycle vibration based on the theories of ordinary differential equations(ODE) stability and non--linear dynamics. Hopf bifurcation happens at critical speed,as well as the phenomenon of hard self--excited vibration are proved to be accordant with the truth after simulating in MATLAB/Simulink.
机构地区 同济大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第10期1251-1254,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50775162)
关键词 非线性振动 极限环 自激振动 HOPF分岔 稳定性 non-linear vibration limit cycle self-excited vibration Hopf bifurcation stability
  • 相关文献

参考文献6

二级参考文献16

共引文献74

同被引文献53

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部