期刊文献+

基于独立分量分析的脑电信号的眼电伪迹消除 被引量:3

Removing EOG artifacts from EEG signal based on ICA
下载PDF
导出
摘要 介绍了独立分量分析技术的基本概念和原理,及其具有代表性的基于负熵最大的快算独立分量分析算法和基于核空间的独立分量分析算法,并分别对脑电中的眼电伪迹进行去除。通过仿真实验表明了独立分量分析算法较快速独立分量分析算法能更好去除眼电伪迹,具有较好准确性和鲁棒性。 This paper introduces a new technology Independent Component Analysis (ICA),including its basic concepts,principles,and some representative algorithms,such as Fast Independent Component Analysis (FICA) and Kernel Independent Component Analysis(KICA).The method of removing EOG artifact from EEG Data was proposed.Simulation results show that KICA algorithm can remove EOG artifact from the EEG signal better,and it is also more accurate and robust than FICA.
作者 李营 艾玲梅
出处 《计算机工程与应用》 CSCD 北大核心 2009年第15期209-212,共4页 Computer Engineering and Applications
基金 陕西师范大学校级资助项目(No.200802019)
关键词 独立分量分析 脑电信号 快速独立分量分析 核独立分量分析 Independent Component Analysis (ICA) electroencephalogram (EEG) Fast Independent Component Analysis(FICA) Kernel Independent Component Analysis(KICA)
  • 相关文献

参考文献7

  • 1Jung T P,Makeig S,Westerfield M,et al.Independent component analysis of single-trial event-related potentials[J].Human Brain Mapping, 2001,14( 3): 168-185.
  • 2Tang A C,Pearlmutter B A,Malaszenko N A,et al.Independent components of magnetoencephaloraphy:Loealization[J].Neural Cofnpuration, 2002,14( 8 ) : 1827-1858.
  • 3Liu Du-lu,Jian Zhao-hui,Feng Huan-qing.Separating the different components of spontaneous EEG by optimized ICA[C]//IEEE Int Gonf Neural Nehvorks & Signal Processing, 2003, (2) : 1334-1337.
  • 4雷江震,邹俊忠,张见,李艳洪,王行愚.快速独立分量分析及其在脑电信号处理中的应用[J].上海生物医学工程,2006,27(3):159-162. 被引量:1
  • 5刘长生,唐艳,汤井田.基于独立分量分析的脑电中眼电伪迹消除[J].计算机工程与应用,2007,43(17):230-232. 被引量:13
  • 6Gao Yun-an,Qiu Qi-ruan.KICA for face recognition based on kernel generalized variance and multiresolution analysis[C]//IEEE Proceedings of the 1st International Conference on Innovative Computing, 2006(2) : 84-87.
  • 7Genton M G.Classs of kernels for machine learning a statics perspective[J].Journal of Machine Research, 2001 (2) : 299-312.

二级参考文献17

  • 1徐庐生,李峰,华蕴博,丁德云.脑电图遥测分析系统[J].中国医学物理学杂志,1997,14(2):112-113. 被引量:6
  • 2Hyvarinen.Independent Component Analysis.2001
  • 3Hyvarinen,Erkki Oja.Independent Component Analysis:Algorithms and Applications.Nerual Network,13(4-5):411-430,2000
  • 4Aapo Hyvarinen,Erkki Oja.(1997).A fast fixed-point algorithm for independent component analysis.Nerual Computation,9(7):1483-1492
  • 5Hyvarinen,A.(1999a).Fast and robust fixed-point algorithms for independent component analysis.IEEE Transactions on Neural Networks,10(3):626-634
  • 6J.-F.Cardoso.Higher order contrast for independent component analysis.Neural Computation,11(1):157-193,1999
  • 7谭郁玲.临床脑电图与脑电地形图学.第四版.北京:人民卫生出版社,2004.:59-64
  • 8Rao K D,Reddy D C.On-line method of enhancement of electroencephalogram in presence of electro-oculogram artifacts using non-linear recursive least squares technique[J].Medical Biology and Engineering Computation,1995,33:488-491.
  • 9Woestenburg J C,Verbaten M N,Slangen J L.The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain[J].Biological Psychology,1983,16:127-147.
  • 10Berg P,Scherg M.Dipole models of eye activity and its application to the removal of eye artifacts from the EEG ad MEG[J].Clinical Physics and Physiological Measurements,1991,12:49-54.

共引文献12

同被引文献26

  • 1唐艳,汤井田.基于独立分量分析的脑电中眼电伪迹消除[J].中国医学物理学杂志,2006,23(5):380-383. 被引量:2
  • 2XU Jin, LI Wenwen, ZHENG Congxun, et al. Noninvasive detection of brain activity variation under different depth of an- esthesia by EEG complexity[J. Academie Journal of Xi' an Jiaotong University (English Edition), 2006, 18(1) 36-39.
  • 3BENOIT O, DAURAT A, PRADO J. Slow (0.7-2 Hz) and fast (2-4 Hz) delta components are differently correlated to theta, alpha and beta frequency bands during NREM sleep[J. Clinical Neurophysiology, 2000, 111(12).. 2 103-2 106.
  • 4NIEDERMEYER E. Alpha rhythms as physiological and ab- normal phenoraenaJ. International Journal of Psychophysi- ology, 1997, 26 (1/2/3): 31-49.
  • 5MONTEZ T, POIL S S, JONES B F, et al. Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease [J]. PNAS, 2009, 106 (5) : 1 614-1 619.
  • 6VIGIl.RIO R N. Extraction of ocular artifacts from EEG using independent component analysis [J. Electroencephalography and Clinical Neurophysiology, 1997, 13(3): 395-404.
  • 7DURBIN J, KOOPMAN S J. Time Series Analysis by State Space Methods[M]. New York Oxford University Press, 2001.
  • 8GALKA A, WONG K F K, OZAKI T. Generalized state- space models for modeling nonstationary EEG time-series [J']. Modeling Phase Transitions in the Brain, 2010 (4): 27- 52.
  • 9WONG K F K. Multivariate Time Series Analysis of Het- eroscedastic Data with Application to Neuroscienee[D. Ka- nagawa : Graduate University, 20135.
  • 10施宁,王行愚,邹俊忠,王蓓.一种改进的加权中值滤波器及其在眼电信号处理中的应用[J].生物医学工程学杂志,2007,24(5):1069-1072. 被引量:2

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部