期刊文献+

两端开口空间的声场研究 被引量:3

A study on the sound field in a vault with two open ends
原文传递
导出
摘要 研究了两端开口空间中声压分布同封闭空间和长空间中的不同,比较传统赛宾公式、改进赛宾公式和声线法对这种空间的估计准确度,同时对其中出现非指数衰变曲线进行讨论,分析其产生的原因、影响因素和规律。文中使用声线法进行数值计算,并且通过实验来和数值结果比较,验证结论。研究表明:两端开口空间中的稳态声压分布与封闭空间和长空间明显不同,混响时间的计算不能再使用传统赛宾公式,声线追踪法无法完全准确地估计稳态声压;其中出现非指数衰变曲线的原因经分析为空间内各不同活跃度的小区域之间的声能量耦合造成,而能否被观察到取决于能否满足耦合空间理论中对于双斜率衰变曲线出现的要求,直观上只要观察点和声源距离相差不远,并且不都在空间中央便可观察到明显的双斜率衰变曲线。 This article studies the difference of sound pressure distribution in a vault with two open ends and in enclosure and long space, by comparing classic Sabine Formula, modified Sabine Formula and ray tracing method's accurate estimation on this kind of space, and at the same time discusses the non-exponential decay curve occurred in that, analyzes the reason of its occurrence, elements and rules of why it has been influenced. Ray tracing method has been used to conduct numerical simulation in this article and results of experiments have been compared with the numerical results to verify the conclusion. The steady sound pressure distribution in the vault with open ends is obviously different from that in enclosure and long space. The classic Sabine Formula can not be used to calculate reverberation time and the estimation of steady sound pressure by ray tracing method is trivial. As for the reason of the occurrence of non-exponential decay curve, it is because the coupling of sound energy between small zones of different 'live' degrees within the space and it also depends on if requirements of double-sloped decay curve in coupled volumes theory can be fulfilled or not. If the distance between the observation spot and sound source is not big and both of them are not in the middle of the space, then double-sloped decay curve could be observed very obviously.
出处 《声学学报》 EI CSCD 北大核心 2009年第3期193-202,共10页 Acta Acustica
基金 国家自然科学基金(10674068,10604030)资助项目 新世纪优秀人才支持计划。
  • 相关文献

参考文献19

  • 1Kang K. Acoustics of long spaces. Thomas Telford Ltd.,2002
  • 2Maa D Y. The flutter echoes. J. Acoust. Soc. Am., 1941;13(2): 170-178
  • 3王季卿.庭院空间的音质[J].声学学报,2007,32(4):289-294. 被引量:13
  • 4Fabrice M, Olivier L, Didier S. Role of the absorption distribution and generalization of exponential reverberation law in chaotic rooms. J. Acoust. Soc. Am., 1993; 94(1): 154-161
  • 5Vilhelm Lassen J. Acoustical criteria for auditoriums and their relation to model techniques. J. Acoust. Soc. Am., 1970; 47(2A): 408-412
  • 6赵凤杰,孟子厚,盛胜我.民族器乐主观混响感差别阈限的测量[J].声学学报,2008,33(6):498-503. 被引量:7
  • 7Wente E C, Bedell E H. A chronographic method of measuring reverberation time. J. Acoust. Soc. Am., 1930; 1(3A): 422-427
  • 8Schroeder M R. New method of measuring reverberation time. d. Acoust. Soc. Am., 1965; 37(3): 409-412
  • 9Xiang N, Goggans P M. Evaluation of decay times in coupled spaces: Bayesian decay model selection. J. Acoust. Soc. Am., 2003; 113(5): 2685-2697
  • 10Xiang N, Goggans P M. Evaluation of decay times in coupled spaces: Bayesian parameter estimation. J. Acoust. Soc. Am., 2001; 110(3): 1415-1424

二级参考文献18

  • 1WANG Jiqing (Institute of Acoustics, Tongji University, Shanghai 200092, China ).A primary study of the acoustics of Chinese traditional theatrical buildings[J].声学技术,2003,22(z1):2-5. 被引量:3
  • 2Seraphim H P. Untersuchungen fiber die Unterschiedsschwelle exponentiellen Abklingens yon Rauschbandimpulsen. Acustica, 1958; 8:280--284
  • 3Karjalainen M, Jarvelainen H. More about this reverberation science: Perceptually good late reverberation, presented at the 111th AES Convention, preprint 5415, New York, NY, USA, 2001
  • 4Niaounakis T I, Davies W J. Perception of reverberation time in small listening rooms. J. Audio Eng. Soc., 2002; 50(5): 343--350
  • 5Ando Y, Okano T, Takezoe Y. The running autocorrelation function of different music signals relating to preferred temporal parameters of sound fields. J. Acoust. Soc. Am., 1989: 86:644--649
  • 6MENG Zihou, ZHAO Fengjie. Measurement of Reverberation Discrimination Threshold for Chinese Subjects with Chinese Music Motifs, AES 120th Convention, May 20-23, 2006, Paris, France, Paper No. 6853
  • 7白瑞纳克.音乐厅和歌剧院上海:同济大学出版社,2002:552
  • 8Carl F E. Reverberation time measurements in coupled rooms. J. Acoust. Soc. Am., 1931; 3(2A): 181-206.
  • 9Davis H. Reverberation equations for two adjacent rooms connected by an incompletely soundproof partition. Phil. Mag., 1925; 6:75-80.
  • 10Ermann E. Coupled volumes: Aperture size and the double-sloped decay of concert halls. J. Building Acoustics., 2005; 12(1): 1-14.

共引文献23

同被引文献28

  • 1葛坚,卜菁华.关于城市公园声景观及其设计的探讨[J].建筑学报,2003(9):58-60. 被引量:83
  • 2刘钊,陈心昭.几类特殊声场的理论解[J].噪声与振动控制,1995,15(6):11-14. 被引量:1
  • 3袁晓梅,吴硕贤.中国古典园林的声景观营造[J].建筑学报,2007(2):70-72. 被引量:50
  • 4Carl F E. Reverberation time measurements in coupled rooms. J. Acoust. Soc. Am., 1931; 3(2A): 181-206.
  • 5Davis H. Reverberation equations for two adjacent rooms connected by an incompletely soundproof partition. Phil. Mag., 1925; 6:75-80.
  • 6Ermann E. Coupled volumes: Aperture size and the double-sloped decay of concert halls. J. Building Acoustics., 2005; 12(1): 1-14.
  • 7Johnson R, Kahle E, Essert R. Variable coupled cubage for music performance. Proc. Music and Concert Hall Acoustics (MCHA 1995), Kirishima, Japan, 1995.
  • 8Wang J. Diffusion and auditorium acoustics. Building Acoustics, 2002; 10:211-219.
  • 9David T B, Lily M W. The effects of simple coupled volume geometry on the objective and subjective results from nonexponential decay. J. Acoust. Soc. Am., 2005; 118(3): 1480-1490.
  • 10Cremer L, Muller H A. Principles and applications of room acoustics. T. J. Schultz, Applied Science, 1982.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部